
1

Xonar: Profiling-based Job Orderer for
Distributed Deep Learning

Changyong Shin, Gyeongsik Yang, Yeonho Yoo, Jeunghwan Lee, Chuck Yoo
Department of Computer Science and Engineering, Korea University

{cyshin, ksyang, yhyoo, jhlee21, chuckyoo}@os.korea.ac.kr

Abstract—Deep learning models have a wide spectrum of GPU
execution time and memory size. When running distributed
training jobs, however, their GPU execution time and memory
size have not been taken into account, which leads to the high
variance of job completion time (JCT). Moreover, the jobs often
run into the GPU out-of-memory (OoM) problem so that the
unlucky job has to restart all over. To address the problems,
we propose Xonar to profile the deep learning jobs and order
them in the queue. The experiments show that Xonar with
TensorFlow v1.6 reduces the tail JCT by 44% with the OoM
problem eliminated.

Index Terms—GPU cloud, distributed deep learning, parallel
training, GPU utilization, job completion time

I. INTRODUCTION

Deep learning (DL) models continuously grow bigger to
enhance the prediction accuracy and cover more diverse
applications from image classification to advertisement [1]–
[3]. To train the big DL models, distributed DL training
(DDLT) is widely used. As DDLT requires a number of
GPUs and networking between GPU nodes, the GPU cloud
is often utilized to facilitate better resource utilization and
consolidation [1], [3]–[5]. We denote each individual training
on a GPU as a “job.” In a GPU cloud, the representative cloud
orchestration platform, such as Kubernetes, places jobs in the
GPU run queues. Once a job is placed, GPU executes the jobs
serially (serial training) [4]. Although serial training is a de
facto standard in existing GPU clouds, GPUs are exclusively
used and so underutilized. To enhance GPU utilization, quite
a few research efforts were made to run the jobs in parallel on
a GPU (parallel training) [2]–[4], [6]. They just receive jobs
in the run queue and execute them; thus, they have two severe
limitations as follows.

The first limitation is that their JCT is highly variable. Sup-
pose that a GPU runs two jobs together. Between the two jobs,
one job can occupy the GPU when the other job is idle. So, the
ideal situation is that the active duration of one job’s utilization
overlaps the idle duration of another job. However, it is well-
known that the mini-batch time extremely depends on deep
learning models [3]. Accordingly, the active and idle duration
also depends on the models. To get some sense, we measure

This work was partly supported by Institute of Information & communi-
cations Technology Planning & Evaluation funded by the Korea government
(Ministry of Science and ICT) (2015-0-00280, (SW Starlab) Next genera-
tion cloud infra-software toward the guarantee of performance and security
SLA) and by Basic Science Research Program through National Research
Foundation of Korea funded by the Ministry of Education (NRF-2021R1A
6A1A13044830). Co-corresponding authors: Chuck Yoo and Gyeongsik Yang.

the active and idle durations of the image classification models
(e.g., AlexNet, VGGNet, ResNet, Inception, and DenseNet) of
TensorFlow (TF) benchmark. We observe that the active and
idle durations range from 5 ms to 5 s, which are of 1000×
difference. Once the jobs are placed on a run queue, their JCT
becomes dependent on the enqueued order. Thus, it is quite
evident that their JCT becomes highly variable (up to 1.5×
difference in our experiments, §II-B2).

The second limitation is that jobs are placed in the run
queue without considering the GPU memory sizes. When the
jobs run parallel training, they often run into the GPU out-of-
memory (OoM) problem. The OoM problem happens when the
required memory of the jobs is greater than the GPU memory’s
capacity. When the OoM problem occurs, all training jobs
halt and should be restarted from the beginning. In our
experiments, we train two jobs in parallel using the image
classification models used above by TF (v1.6) benchmark with
V100 GPU of 32GB GPU memory. We observe that 15.2%
of the parallel training results in the OoM problem (§II-B3).

To address these limitations, this paper proposes Xonar, a
profiling-based job orderer for DDLT. Xonar first profiles the
jobs (offline) and finds the GPU execution time and memory
size. Specifically, we instrument TF v1.6 library to measure
the active and idle durations of GPU execution. Also, we
obtain the GPU memory size (consumption) during the active
duration. Xonar then uses the information to order jobs in
the run queue. Experiment results show that Xonar reduces
the 99% tail JCT by 44.1% and 32% than serial training
and parallel training, respectively. In addition, Xonar entirely
removes the occurrence of the OoM problem.

II. BACKGROUND AND MOTIVATION

A. Related Work

Kubernetes [7] is the representative container orchestration
platform. Kubernetes places jobs on the GPU servers. Each
GPU then serially trains the placed jobs. Specifically, the jobs
are trained on a first-come first-served (FCFS) basis, which
means that job training follows the enqueued order. To enhance
the poor GPU utilization of serial training, several studies
propose the following approaches. HiveMind [2] merges eight
individual jobs into one bigger job. Also, KubeShare [4] runs
all enqueued jobs at once in parallel. Ebird [6] runs multiple
inference jobs on a GPU and sets an upper limit for the number
of co-running jobs. Note that HiveMind, KubeShare, and Ebird
load the jobs on the FCFS basis to run in parallel without any

Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works. This is an accepted version of this paper. Final published paper can be found at
https://doi.org/10.1109/CLOUD55607.2022.00030.

https://doi.org/10.1109/CLOUD55607.2022.00030

consideration of the order of jobs in the run queue. Thus,
they end up showing highly varying JCT. Furthermore, these
studies do not handle the OoM problem during training. When
the OoM problem occurs, all the training jobs halt, and the
training of the jobs should be restarted from scratch.

AntMan [3] also runs jobs in parallel. While running jobs,
AntMan obtains the mini-batch time from the DL libraries
(e.g., TF) as the DL libraries commonly report them. AntMan
then increases the number of jobs that run in parallel as long
as the mini-batch time does not go over its threshold. When
loading the jobs, AntMan follows FCFS, and so the order of
training is the order of jobs enqueued. For the OoM problem,
AntMan introduces a mechanism that uses the host memory
together with the GPU memory. However, the total memory
capacity is limited, so the OoM problem still remains. Yet,
AntMan does not address the OoM problem.

B. Motivating Experiments

1) Experiment setup: : Unless stated otherwise, we use the
following setup throughout this paper. Rather than compositing
custom DL models, we use the de facto image classification
DL models (e.g., AlexNet, VGGNet, ResNet, Inception, and
DenseNet) provided by the official TF (v1.6) benchmark [8].
From the benchmark, we make 600 cases of DDLTs through
combinating DL models, hyperparameters (e.g., optimizers,
fp 16, and batch size of 32 to 512), and datasets (e.g., CIFAR-
10 and ImageNet). The experiments are conducted with a
GPU server equipped with Intel Xeon Skylake processor (16
cores), 128 GB memory, and two V100 GPUs that have 32 GB
GPU memory each. All the DDLTs are with data parallel and
parameter server strategy. We configure two parameter servers
and two GPU workers, and each worker trains with a separate
GPU. To evaluate parallel training, each GPU runs two jobs
at once.1 Each worker repeats the training for 100 iterations.

2) Highly variable JCT problem: To see the varying JCT of
parallel training, we conduct the following experiment. From
the 600 cases, 10 jobs are randomly selected and enqueued.
We permute the enqueued order of the jobs. Then, we check
the JCT variance to see the effect of the enqueued job order.
If the OoM problem occurs, we stop and serially train the jobs
that caused the OoM problem. The other jobs in the queue are
then trained in parallel.

We repeat this experiment three times (experiments A to
C in the x-axis of Fig. 1). In each experiment, 10 jobs are
randomly and freshly selected, and they are trained 25 times
by changing the enqueued order of the selected jobs. Fig. 1
shows the JCT distribution of the three experiments, which is
normalized to the minimum JCT in each experiment. In the
results, JCT shows high variability from 1.2× (experiment A)
to 1.5× increase (experiment B). The results show that the
training (enqueued) order makes a big difference in JCT.

3) OoM problem: We test the OoM problem. Similar to the
JCT problem, we randomly choose 10 jobs from 600 cases.

1We empirically determine the number of jobs to run together as two
considering the 600 DDLTs’ peak memory consumption and GPU capacity.

A B C
1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

JC
T

Fig. 1: Highly
variable JCT.

Run queue

Xonar profiler

Xonar
orderer

GPU

JPJA

123…

Fig. 2: Xonar components.

By training two jobs in parallel, we check how often the OoM
problem happens. Out of 396 parallel training, we observe that
the OoM problem happens 60 times, which is about 15.2%.
This is a non-trivial ratio as the previous studies have no
solution to the OoM problem.

III. DESIGN

Fig. 2 shows the components of Xonar. Xonar consists of
profiler and orderer, detailed as below.

A. Xonar Profiler

Xonar profiles the active and idle durations of GPU uti-
lization. Existing GPU profiling tools, such as NVML and
pyNVML, can measure the GPU utilization; to our knowledge,
however, they cannot distinctly measure the active and idle
durations. So, we design “Xonar profiler” based on the in-
depth analysis of the TF v1.6 internals. We have analyzed
the internals of TF v1.6 in details as follows: 1) high-
level API codes that translate operations like the convolution
layer into various computations (called op, such as matrix
multiplication), 2) the ops that become a computational graph,
3) the internal implementation of the detailed ops for devices
(GPU), and 4) the training pipeline that executes the ops of the
graph one-by-one according to the device. From this detailed
analysis, Xonar profiler instruments the source code of the
TF library and clocks the start and end of each op that TF
executes. By distinguishing the devices (i.e., GPU) where the
ops are executed, Xonar profiler accurately measures the active
and idle durations per iteration.

To address the OoM problem, we especially focus on the
peak memory consumption. The peak memory consumption
is obtained as follows. First, for each iteration, Xonar profiler
regularly measures the amount of GPU memory that a job
holds. Then, the maximum memory consumption is recorded
in an iteration. Xonar profiler then selects the highest value
from the maximum consumptions of multiple iterations as the
peak memory consumption. In measuring the GPU memory
consumption of a job, Xonar profiler leverages NVML [9].
The interval of measurement is 1/6 s, which is the minimum
interval for measuring GPU memory by NVML.

With Xonar profiler, we profile 600 cases to investigate
the GPU utilization. Fig. 3a is the GPU utilization snapshot
of the VGG16 model trained by ImageNet dataset for 5 s.

0 2 4
0

50

100

Time

G
P

U
ut

ili
za

tio
n

(%
)

(a) VGG16 example.
Active Idle

0

2000

4000

6000

D
ur

at
io

n
(m

s)

(b) Duration differences.

Fig. 3: GPU profiling
The figure includes four iterations, and the GPU utilization
repeatedly shows active and idle durations. Also, the active and
idle durations look quite constant across iterations. Note that
the idle durations occur due to the networking in DDLT for
updating gradients and parameters. By profiling, we observe
that 600 cases follow trends similar to what Fig. 3a shows.

Second, we investigate the idle and active durations. We
run 600 cases and get the distribution of the active and idle
durations per iteration.2 Fig. 3b shows the results where the
active duration ranges from 18 ms to 4.9 s, and the idle
duration from 5 ms to 1.8 s. Assume two jobs running together
on a GPU. If the idle duration of a co-running job is short,
the other job has less opportunity to utilize the GPU. On the
opposite, where the idle duration is long, the other job will
have more opportunities to utilize the GPU. Xonar provides
the active and idle duration time of all the 600 cases to job
orderer explained in §III-B.

Xonar profiler takes about 63.4 s on average for the profiling
of each case. In this study, we use the pre-profiled data (offline)
to show the feasibility of Xonar. However, considering that the
jobs of existing public GPU clouds usually wait for their turn
for training for up to hundreds of minutes [1], we believe
the profiling time can be overlapped with the waiting time.
Further, we plan to develop prediction methods for profiling
metrics to remove the job profiling step.

B. Xonar Orderer

JCT highly varies by the training (enqueued) order of jobs
as seen in Fig. 1 (§II-B2). Also, we observe that the jobs
show very different active and idle durations. Xonar orderer
determines the proper order of training jobs by considering
the active and idle durations as follows. First, Xonar orderer
picks a job from the run queue. We denote this job as JA. To
find another job (JP) to run together with JA, Xonar orderer
scores the degree of fitness in terms of two factors. The first
factor is the GPU memory capacity. Xonar orderer first filters
out the jobs in the run queue that require memory larger than
the current available GPU memory that is the GPU memory
capacity subtracted by the peak memory consumption of JA.
In filtering, we use the peak GPU memory consumption to
avoid the GPU OoM problem. For the filtered jobs (Qfiltered),

2As the durations are constant across iterations, we empirically average the
durations from 10 iterations.

Average 75% 90% 99%
0

400

800

1200

1600

JC
T

(s
)

Serial Parallel Xonar

Fig. 4: JCT evaluation

the second factor is the fitness between the idle and active
durations between jobs. For each job of Qfiltered (Jn), Xonar
orderer calculates the active-idle ratio (rn) by dividing the
active duration of Jn by its idle duration. Let us assume that
the rA is 6/4. Then, the proper JP would be the job whose rn
is the inverse of the rA (i.e., 4/6) because JP ’s active duration
can overlap with the idle duration of JA. Thus, Xonar orderer
selects JP using the following Equation 1.

JP = min
Jn∈Qfiltered

|rA×rn − 1| (1)

IV. EVALUATION

We implement Xonar profiler and job orderer using Python
with TF v1.6. We compare Xonar with serial training and
parallel training in the experiment setting of §II-B1.

Varying JCT. Our evaluation runs10 jobs randomly selected
from 600 cases. We compare serial training, parallel training,
and Xonar. The experiment is repeated 50 times. Fig. 4 shows
the JCT with the average, 75%, 90%, and 99% tail JCTs (x-
axis). For the average JCT, Xonar reduces JCT by up to 43.6%
and 13.7%, compared with serial training and parallel training,
respectively. The improvements are greater for the tail JCT.
Xonar bounds its 99% tail JCT within 736 s, while serial and
parallel trainings reach up to 1317 s and 1083 s, respectively.
This means that the 99% tail JCT of Xonar is 44.1% and 32%
lower than those of serial and parallel trainings. These results
show that Xonar reduces the JCT variability significantly.

OoM problem. In §II-B3, we have noticed that 15.2% of
parallel training encountered the OoM problem. We evaluate
Xonar in the same experiments and find that Xonar entirely
avoids the occurrence of the OoM problem.

V. CONCLUSION AND FUTURE WORK

This study proposes Xonar, a profiler-based job orderer for
DDLT. We show that Xonar enhances the tail JCT by up to
44% while entirely avoiding the OoM problem. As future
work, we extend Xonar to cover parallel training for more
than three jobs. Also, we plan to apply Xonar to other DL
libraries (e.g., PyTorch), different DT strategies (e.g., model
parallel and all-reduce), various DL workloads (e.g., language
models), and various GPUs. Furthermore, we plan to cover
job placement over multiple GPU servers with Xonar as well.

REFERENCES

[1] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and L. Zhou, “Gandiva:
Introspective cluster scheduling for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 595–610.

[2] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia, “Acceler-
ating deep learning workloads through efficient multi-model execution,”
in NeurIPS Workshop on Systems for Machine Learning, vol. 20, 2018.

[3] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “AntMan: Dynamic scaling on GPU clusters for deep
learning,” in 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020, pp. 533–548.

[4] T.-A. Yeh, H.-H. Chen, and J. Chou, “KubeShare: A framework to
manage GPUs as first-class and shared resources in container cloud,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, 2020, pp. 173–184.

[5] M. Kang, G. Yang, Y. Yoo, and C. Yoo, “TensorExpress: In-network
communication scheduling for distributed deep learning,” in 2020 IEEE
13th international conference on cloud computing, 2020, pp. 25–27.

[6] W. Cui, M. Wei, Q. Chen, X. Tang, J. Leng, L. Li, and M. Guo,
“Ebird: Elastic batch for improving responsiveness and throughput of
deep learning services,” in 2019 IEEE 37th International Conference on
Computer Design (ICCD). IEEE, 2019, pp. 497–505.

[7] Kubernetes. Accessed: 2022-03-12. [Online]. Available: https:
//kubernetes.io/

[8] benchmarks/scripts/tf cnn benchmarks. Accessed: 2021-12-18. [Online].
Available: https://github.com/tensorflow/benchmarks

[9] NVML API reference guide. Accessed: 2021-10-24. [Online]. Available:
https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilizationt.html

https://kubernetes.io/
https://kubernetes.io/
https://github.com/tensorflow/benchmarks
https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilizationt.html

	Introduction
	Background and motivation
	Related Work
	Motivating Experiments
	Experiment setup
	Highly variable JCT problem
	OoM problem

	Design
	Xonar Profiler
	Xonar Orderer

	Evaluation
	Conclusion and future work
	References

