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Abstract—Network virtualization (NV) becomes an essential
technology in cloud computing that isolates network flows for
tenants. However, because existing NV technologies like overlay
do not enable tenants to directly program (i.e., provision, control,
and monitor) network resources, software-defined networking
(SDN)-based NV (SDN-NV) has been proposed. Despite its
great benefits, SDN-NV has been believed to bring considerable
overheads due to the network hypervisor (NH). However, to
date, there is no definite performance evaluation that proves the
overheads of SDN-NV. To this end, this paper comprehensively
investigates the performance and overheads of SDN-NV. Our
experiment results reveal that SDN-NV provides the data plane
performance comparable to or even better (up to 10.5× better
TCP throughput) than the existing NV technologies. Also, the re-
sults on NH show that its overheads remain mostly constant, even
when the number of switches, virtual networks, or network flows
increases. In short, our evaluation indicates that the overhead of
SDN-NV should not deter its practical use in datacenters.

Index Terms—Network virtualization, Performance evaluation,
Cloud computing, Software-defined networking

I. INTRODUCTION

Network virtualization (NV) is indispensable in cloud com-
puting for providing various network services within the
physical infrastructure. NV is responsible for providing iso-
lated network connections—called virtual networks (VNs)—
between virtual machines (VMs) and containers. Typically, NV
is realized through overlay networking, which attaches addi-
tional headers in front of each packet. In overlay networking,
however, the tenants are not allowed to control the data plane
switches because only data center operators configure overlay
networking. To overcome this limitation, NV-based software-
defined networking (SDN) has been proposed. SDN is a
network architecture that centralizes the control functionalities
of switches into an SDN controller (control plane). Then the
switches become packet-processing devices and operate on the
actions given by the SDN controller. As the SDN controller
enables the central management of all switches, the NV of
the switches becomes feasible, which introduced SDN-based
NV (SDN-NV). SDN-NV places a network hypervisor (NH)
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above the physical network (PN) of switches (Fig. 1). The NH
abstracts the underlying PN and creates multiple VNs in the
context of SDN. Thus, each tenant controls its VN through
its SDN controller (VN control plane in Fig. 1). This way,
SDN-NV opens up new possibilities for tenants that can make
VNs programmable [1].

Recent studies added the various functionalities to SDN-
NV [2] (e.g., network slicing [3], policy composition [4],
address virtualization [5], platform scalability [6], [7], and
features for datacenters such as VM migration support [1], [8]
and performance management [9]). However, the performance
results published so far pose a serious challenge to SDN-NV
in that it still needs to prove its practical value beyond research
efforts. It is like the early days of (server) virtualization
technology, which has been around for a long time but was
rarely used in practice due to its overhead. When the overhead
was proved to be rather small [10], virtualization technology
took off and became a fundamental technology for cloud
computing. This paper aims to comprehensively evaluate the
overhead of SDN-NV to prove whether it is small enough
to be deployed in cloud computing infrastructures. Thus, we
conduct a critical review of evaluations in previous studies and
categorize them based on PN and NH.

First, PN consists of a set of network devices (switches) that
forward packets. Previous studies showed the PN performance,
but they have critical limitations. First, the key performance of
the PN, such as network throughput or packet latency, varies
with the number of network switches or flows (which we call
variables). Yet, the performance metrics have been measured
over only a small range of variables (e.g., one to ten in the
number of switches [8]), which is far from realistic scenarios.
In addition, evaluations have been conducted with only a single
tenant, although the SDN-NV system provides multiple VNs
for multi-tenancy. More importantly, the PN evaluations have
not been compared with existing NV technologies such as
overlay (§II-C1). Such a comparison is essential because SDN-
NV is a new generation of NV that enables the control of VNs
by tenants. Thus, it is necessary to compare the performance
of the PN with that of the existing NV technologies because
PN performance determines the user service qualities.

Second, the NH is another source of the SDN-NV overhead
because the NH puts additional processing in the control plane.
We find that, for the NH, its overheads over the number of
flows have not been benchmarked thoroughly. Also, previous
studies have evaluated only a single tenant. In addition, most
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Fig. 1: SDN-NV architecture.

studies have evaluated NHs with the out-of-date version of
OpenFlow (OF) and NV technologies. To summarize, the
performance evaluation of previous studies on NHs has missed
out key aspects of performance, multi-tenancy, and up-to-date
system specifications (§II-C2).

Therefore, it still remains whether the overhead of SDN-
NV is small enough to be deployable. To this end, this paper
comprehensively investigates the performance and overhead of
SDN-NV technology, bringing the following differences and
novelties compared with the previous studies:

• Comparison with existing NV technologies, especially
two dominant technologies for NV, overlay and NAT [11].
Our experiments are carried out with containers because
it is the de-facto in cloud computing due to its high
portability and little overhead [12].

• All-inclusive benchmarking on the data plane and NH
covering the aspects missed in the previous studies—
experiments over the number of switches, flows, and VNs
and also multi-tenant environments.

Our benchmarking includes numerous measurements (more
than 300 cases), and key results are as follows:

• Surprisingly, in the data plane performance, SDN-NV
achieves 10.5× higher throughput (§III-B) and 33% better
per-packet latency than overlay. Furthermore, our results
show that SDN-NV has superior data plane performance
over the existing NV technologies (§III-C).

• The overheads (message processing delay and CPU cy-
cles) of NH mostly stay constant as the number of
switches, VNs, and flows increase.

• The NH creates multiple VNs and processes flow rules
for them. Therefore, it is expected that when the number
of tenants increases, the NH becomes overloaded so that
the processing delay on each flow rule can increase.
Interestingly, our results show that NH can reduce its
processing delay when the number of tenants increases
(VNs). We discuss the results and reasons in §IV-B2.

II. BACKGROUND

A. SDN-NV

SDN-NV consists of three layers (Fig. 1): 1) PN composed
of physical switches, 2) NH, and 3) VN control plane that
runs SDN controllers of tenants. Each tenant can request
the creation of its VN topology, which includes the virtual
switches and links that connect switches and their hosts. The
NH receives the request and allocates the VN resources for
the topology. After the VN resources are allocated, the tenant
can manage and control the resources.

To illustrate how SDN-NV works, we explain the packet
forwarding in SDN-NV. When a new packet arrives at the

physical switch, the switch requests the NH for a flow rule to
process the packet through a “PACKETIN” message. NH then
delivers the PACKETIN to the corresponding SDN controller
by determining which tenant the packet is destined for. Upon
receiving the PACKETIN, the SDN controller calculates a
path that forwards the packets and creates flow rules for the
switches in the path. Then, the flow rules are wrapped as
FLOWMOD messages and sent to NH, and NH installs the flow
rules in the switches. The messages, such as PACKETIN and
FLOWMOD, are called control messages. Between the switches
and SDN controllers, the NH includes address virtualization
mechanisms, which will be explained in the next section.

B. Address Virtualization Mechanisms in SDN-NV

The key difference between NH schemes lies in address
virtualization. Address here refers to the network address
of hosts, such as IP addresses. SDN-NV allows tenants to
select arbitrary addresses for their hosts (virtual address)
[2], and NH performs address virtualization to avoid address
conflicts between tenants. Existing NHs proposed four kinds
of address virtualization schemes: slicing, TID embedding,
address mapping, and locator embedding.

First, slicing [3] divides the address space (e.g., of IP) and
allocates a subspace to each tenant; thus, each tenant can use
the addresses in the subspace, not an arbitrary network address.
So, as the number of tenants increases, the subspace that
each tenant uses becomes limited. Second, TID embedding
embeds a tenant ID (TID) in every packet. Physical switches
distinguish the virtual addresses through the tenant IDs. For
example, FlowN used VLAN for implementing TID [13], and
Libera used an existing field of the TCP/IP header (e.g., source
MAC address) to embed the TID [1]. Third, address mapping
[5] maintains a mapping between the virtual address and the
physical address. So, each virtual address is linked to one
physical address. Therefore, tenants can use their own virtual
addresses via address mapping. Lastly, locator embedding uses
a combination of TID and the switch’s address (called LITE).
This scheme supports the migration of a virtual host, which
frequently occurs in datacenters for resilience and energy
efficiency [8], [14]. With the LITE values, physical switches
distinguish packets based on the switches where the packets
come from. Note that for slicing, TID embedding, and address
mapping, NH immediately processes each flow rule when it
arrives at the NH. Conversely, for locator embedding, NH
should wait for all the flow rules constituting a path between
the source and destination hosts in order to know LITE values.

C. Literature Review

Seven major studies on SDN-NV are summarized in Table
I. We categorize the studies into two subcategories: 1) bench-
marking on SDN-NV and 2) proposing enhanced functional-
ities to SDN-NV. We specify the evaluation setting for each
study that shows the methodology (simulation or emulation)
and southbound interface (OF 1.0 or 1.3). The rest of Table I
shows the evaluation metrics for the PN and NH, which are



TABLE I: Previous SDN-NV Studies Comparison in Terms of Performance Evaluation

Categorization Benchmarking Proposing enhanced functionalities to SDN-NV
Study This paper perfbench [15] FlowVisor [13] FlowN [3] OVX [5] LiteVisor [8] Libera [1]

Evaluation setting Emulation
(OF 1.3)

Simulation
(OF 1.0)

Emulation
(OF 1.0)

Emulation
(OF 1.0)

Emulation
(OF 1.0)

Emulation
(OF 1.0)

Emulation
(OF 1.3)

PN
Flow Throughput Ë( ) Ë( ) Ë( )

Per-packet latency Ë( )

Switch Switch CPU Not focused Ë( )
# of flow rules Ë( ) Ë( )

NH

Message
processing

delay

PACKETIN Ë( ) Ë( ) Ë( )
PACKETOUT Ë( ) Ë( )
FLOWMOD Ë( ) Ë( ) Ë( ) Ë( )
PACKETIN
–FLOWMOD Available Ë( ) Ë( )

Message
throughput

PACKETIN
Not focused

Ë( )
PACKETOUT Ë( )
FLOWMOD Ë( )

Resource
consumption

CPU Ë( ) Ë( ) Ë( )
Memory Not included Ë( )

marked with checks (Ë). The symbols in Table I have the
following meanings.

• Rectangles: experimental variables—the number of VNs
( ), number of physical switches ( ), number of flows in
PN ( ), and no variations ( ).

• Triangles: topology virtualization—multiple VNs created
and also physical switches are shared by multiple VNs
( ), multiple VNs created but physical switches are not
shared ( ), and single tenant ( ).

• Circles: the level of comparison—comparison to the
previous NHs ( ), to existing NV technologies ( ), and
no comparison ( ).

1) PN: PN benchmarking has two metrics: flow and switch.
Measurements on flow are used for analyzing the performance
of SDN-NV on each flow (e.g., TCP or UDP), and mea-
surements on switches are used for analyzing the resource
consumption (e.g., CPU and memory) that a switch requires
for packet processing

For the flow metric (throughput and latency), the previous
studies have the following missing points. First, the flow
throughput can be changed differently on the number of VNs,
physical switches, and flows (we call experimental variables
or simply variables). However, paper [13] measured the flow
throughput without any variable changes (rectangle of [13]
in Table I). Also, the paper [8] measured flow throughput by
changing only the number of switches. This paper conducts ex-
periments on all three variables (i.e., switches, flows, and VNs
1 ). Second, per-packet latency is critical in many applications
such as data mining [16], but it has not been measured pre-
viously. This paper includes the measurements on per-packet
latency. Third, all existing evaluations on PNs are conducted
with a single tenant (triangle in Table I), indicating that
the performance and overhead of multi-tenancy have not been
thoroughly investigated. Thus, we evaluate the performance of
PN with multi-tenants. Lastly, existing studies did not compare
the PN performance to existing NV technologies. This paper
compares SDN-NV with overlay and NAT in the container
environment (§III-A). Note that we do not measure the switch

1We check all the variables that have been used in previous studies, and in
summary, consider a total of three—number of VNs, switches, and flows.

metrics (i.e., switch CPU and memory) because such metrics
are heavily dependent on switch architectures [17], [18]. Thus,
we focus on measurements on flow metrics.

2) NH: For NH metrics, message processing delay, mes-
sage throughput, and resource consumption are considered.
First, message processing delay is the time for processing
a control message within NH. It is measured for each mes-
sage that NH processes, such as PACKETIN, FLOWMOD, and
PACKETOUT. As shown in Table I, previous studies lacked
experiments in terms of variables (rectangles) [8], [13]. Also,
two studies [3], [5] measured the message processing delay
of the messages without separation of messages (denoted as
“PACKETIN–FLOWMOD” in Table I). This paper measures the
processing delay of individual messages (i.e., PACKETIN,
FLOWMOD, and PACKETOUT) for all the variables. Also,
PACKETIN–FLOWMOD can be derived through the aggrega-
tion of messages.

Second, the message throughput is the number of messages
processed per second by NH. Only one study [15] mea-
sured the message throughput because measuring the message
throughput requires the arbitrary generation of messages from
both PN and SDN controller, which is only possible in a sim-
ulation environment. Because this paper performs experiments
in Fig. 2, where software switches (e.g., Open vSwitch), NH,
and SDN controllers are utilized with actual network traffic,
measuring the throughput is inevitably limited. Note that other
studies in Table I did not measure the message throughput for
the same reason. Rather, we focus on measuring the message
delay, which exhibits the overheads.

Third, for the resource consumption of NH, two studies
measured CPU cycles, and one study provided memory usage.
In this paper, we measure both CPU cycles and memory
consumptions but present the results on CPU cycles due to
the page limit. We omit the results for memory consumption,
but they tend to be very similar to CPU utilization.

Regarding the OF version, except Libera [1], all previous
studies measured the NH overheads with OF 1.0. Considering
that most SDN switches in datacenters support OF 1.1 or
higher versions, the studies with OF 1.0 are in some sense ob-
solete. This paper conducts comprehensive evaluations based
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Fig. 2: Deployment of comparative groups on equipment.

TABLE II: Variable Changes for PN.
Changing variable Switch VN Flow

Switch 3 to 100 1 1
VN 3 1 to 20 20

Flow 3 1 1 to 100

on Libera with the OF 1.3 interface. Lastly, most studies
are based on a single tenant (Triangle of [1], [8], [13] in
Table I). Even in experiments with the multi-tenants [3], [5],
each physical switch is dedicated to each tenant (Triangle ),
which means that the PN is not actually virtualized. Therefore,
this paper carries out experiments where several tenants share
physical switches.

III. EMPIRICAL BENCHMARKING ON PN

This section explains the evaluation methodology deter-
mined upon the literature review (§II-C1). Then, the evaluation
results are presented and analyzed.

A. Evaluation Methodology for PN

Experiment environments. We run experiments with five
comparative groups: 1) overlay, 2) NAT, 3) address mapping,
4) TID embedding, and 5) locator embedding. The first two
are the popular NV techniques, and the latter three are for
SDN-NV. Locator embedding is implemented with VLAN.
Fig. 2 shows the experiment environments for the comparative
groups. For overlay (Fig. 2a), a bridge is used with VxLAN
and veth interfaces. Containers act as servers and clients
of connections. Each container is bound to the bridge by
a veth interface. Also, each bridge has a vxlan interface
to perform packet encapsulation and decapsulation on each
packet. In addition, for NAT (Fig. 2b), a bridge performs
address translation on each packet. For SDN-NV (Fig. 8c),
we use Open vSwitch (OVS) that supports the OF protocol.
These settings are the representative and widely used ones for
NV in containers [11]. The software switch (e.g., bridge or
OVS) that processes the packets from the containers directly
is located in Machine 1 and Machine 3. In Machine 1 and
Machine 3, multiple containers are created to run TCP and
UDP connections. Between Machine 1 and Machine 3, we
create a number of software switches (OVS) in Machine 2.

Metrics. We measure throughput and latency on flow.
Throughput determines the maximum amount of data that
each server and client pair can transmit per second. We
measure throughput using iperf3 with TCP flows. Each TCP
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Fig. 3: Throughput of TCP connections.

segment size is set as the maximum transmission unit2. A
TCP connection lasts 180 s, and the average throughput per
second is shown. Latency is the round-trip time (RTT) between
a server and client pair that shows the per-packet processing
delay. We measure the per-packet latencies using sockperf with
UDP packets as the pure overheads of NV technologies. For
each delay experiment, the RTT measurement is carried out
for 2 minutes in succession and repeated ten times.

Experiment variables. Table II lists the experimental vari-
ables for PN. For throughput, we vary the number of switches,
flows, and VNs. The range of each variable is selected as the
maximum possible range in the experimental machine. Table
II means that when the number of switches changes from 3
to 100, a single TCP flow is generated with a single VN. In
the case of variable VN, we create 20 flows with 3 switches,
which produce 20 TCP flows to transmit the maximum number
of packets. We evenly distribute 20 flows for all VNs. For the
variable flow (i.e., 1–100), the number of switches is fixed at
3, and the number of VN is at 1.

However, for latency, we change only the number of
switches. Latency measurements aim to compare the pro-
cessing latency on each packet without network congestions.
Because the latency is affected by background traffic (e.g., the
addition of queueing delays), we do not evaluate latency in the
varied number of flows and VNs.

B. PN Evaluation Results: Throughput

Fig. 3 plots the TCP throughput with experimental variables.
Each dot is the aggregated throughput of the TCP connections.
First, as the number of VNs increases (x-axis), Fig. 3a shows
that the throughputs of four comparative groups maintain rel-
atively consistent values: approximately 8 Gbits/s on average.

2We deploy different underlying software switches to enable NV technolo-
gies (e.g., bridge and OVS) as the NV technologies are deployed with them
[11]. Also, we know that packet size affects performance because of the per-
packet processing overheads whose variations depend on the switches. Such
variations reduce by setting the packet size as the maximum transmission unit.
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However, overlay shows quite a poor throughput—1.38 Gbits/s
on average.

In fact, the poor performance of overlay is investigated in
previous studies [11], [19], [20] and is proven due to the heavy
packet transformation using kernel features with bridges. To
encapsulate and decapsulate packets for overlay (e.g., vxlan),
the packet should traverse the networking stack of the kernel
two times, which explains the poor throughput. On the other
hand, NAT, address mapping, and TID embedding process
packets only within the software switch, so their throughput
is 5.8× higher than that of the overlay.

Note that locator embedding in SDN-NV also performs
packet encapsulation and decapsulation. Specifically, locator
embedding performs the packet encapsulation and decapsula-
tion twice to include LITE values (§II-B) for the source and
destination hosts on each packet. Locator embedding lowers
its overhead by using SDN−enabled software switches (e.g.,
OVS)—OVS can offload the overheads of packet encapsula-
tion and decapsulation on NIC (vxlan offloading); thus, the
throughput of locator embedding approaches results similar to
those of NAT, address mapping, and TID embedding.

Second, when the number of switches increases (Fig. 3b),
the throughput decreases for all comparative groups. The
throughput of overlay, NAT, address mapping, TID embedding,
and locator embedding decreases by up to 90%, 58%, 59%,
59%, and 63%, respectively (comparing three switches and
100 switches). Also, between the five groups, overlay also
shows the lowest throughput due to its encapsulation and
decapsulation overhead—on average, the overlay throughput
values are 88% lower than those of the other four groups.

Third, when the number of flows changes (Fig. 3c), all com-
parative groups show relatively constant throughput. Specif-
ically, NAT, address mapping, TID embedding, and locator
embedding show similar throughputs, 8–9 Gbits/s, while the
overlay shows the lowest throughput—1.38 Gbits/s on average.
The throughput of overlay is 83% lower than the average
throughput of the other four comparative groups.

C. PN Evaluation Results: Per-packet Latency

We have measured the entire distribution of per-packet
latencies, but due to the space limit, only the median latency
(50%) is presented in Fig. 4. For all comparative groups, the
latency broadly increases as the number of switches arises. By
comparing the comparative groups, Fig. 4 shows that address
mapping, TID embedding, and locator embedding have lower
latencies than both NAT and overlay (e.g., 0.65×, 0.58×,
and 0.73×, respectively, of averaged latencies of NAT and
overlay) when the number of switches is small (l–50). This

TABLE III: Variable Changes for NH.
Changing
variable Switch VN Flow PN topology Hosts

Switch 1 to 100 1 1 Linear Two for a VN
Flow 20 1 1 to 200 4-ary fat-tree 16 for a VN
VN 1 10 to 70 70 Linear Two for a VN

is because SDN-NV schemes are deployed with OVS, which
has a better utilization than the kernel-based approach (i.e.,
bridge). Considering that typical connections in datacenters go
through quite less than 50 switches [21], the results indicate
that SDN-NV schemes have better per-packet latency than
NAT and overlay in cloud computing.

On the other hand, as the number of switches increases,
the latencies of address mapping, TID embedding, and locator
embedding increase rapidly. Thus, all comparative groups
show similar latencies (approximately 400–500 µs at 100
switches). The comparative groups have different implemen-
tations of NV, so that they should have produced a range of
respective latencies. However, the latencies are amortized with
the packet processing delays within the switches as the number
of switches increases. Thus, the latencies of the comparative
groups become similar when the number of switches is high.

IV. EMPIRICAL BENCHMARKING ON NH
A. Evaluation Methodology for NH

Experiment environment. Different from the PN exper-
iments (Fig. 2c) that create PN on three separated physical
machines, PNs in NH experiments are created on a single
machine. This is because NH experiments aim to see the
overheads of NHs, not the PN, so we reduce the complexity of
PN configuration. Mininet of OVS emulates PN topologies—
linear and fat-tree topologies, as shown in Table III. In the
linear topology, the number of switches in a forwarding path
between a source and destination hosts is as many hops as
switches in the network. For the 4-ary fat-tree topology, a
path consists of five switches on average.

Flows are generated as TCP connections using iperf3. The
created flow does not stop until the last flow is created so
that NH receives control messages for flows consecutively.
With the emulated PN on a physical machine, two additional
machines run NH and SDN controllers of tenants, respectively.
Each machine is equipped with two Intel Xeon E5-2690 CPUs
(24 cores) and 64 GB of memory. A 10 GbE Ethernet connects
three machines. For SDN controllers, we use ONOS. The
match fields of flow rules from ONOS include ethernet, IP,
and port addresses to process the new flows in the PN with
a separate flow rule so that the number of control message
processing tasks of NH is the same as the number of flows3.

Metrics. We measure two metrics: message processing
delay and resource consumption of NH. The message pro-
cessing delay is presented for each control message type
(e.g., PACKETIN, FLOWMOD, and PACKETOUT). For resource
consumption, we measure the CPU cycle. CPU cycles are
measured while control messages are processed.

3If the rules from ONOS match up to IP addresses, multiple flows from
the same host pairs can be processed with the single flow rule.
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Fig. 5: Message processing delay (PACKETIN).
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Experimental variables. We use three variables in exper-
iments: the number of physical switches, flows, and VNs, as
shown in Table III. The range of each variable (e.g., 10–100 for
switches, 10–200 for flows, and 10–70 for VNs) is determined
under the condition where the CPU, NIC, and memory of the
experiment machines do not become bottlenecks. Their ranges
are wide and sufficient compared to those of previous studies.
As shown in Table III, when each variable is changed, the other
variables are fixed at a value. We set the inter-flow generation
time to 1 s. To change the number of VNs, we evenly distribute
the flows for all VNs. For example, when the number of VNs
is seven, each VN processes ten flows. The VN topology is
cloned into a PN topology.

Comparative groups. NHs differ from each other based on
the address virtualization schemes (§II-B); thus, we compare
the above metrics and variables for three SDN-NV compar-
ative groups: 1) address mapping, 2) TID embedding, and
3) locator embedding. These three comparative groups repre-
sent the overheads of NH. In SDN-NV, NH is a standalone
component between PN and VN control plane. Thus, the
metrics, such as message processing delays and CPU cycles,
are the overheads additionally added to the tenant’s control
plane due to the SDN-NV. The comparative groups are run by
Libera because it has the implementation of three comparative
groups. Note that for the experiments on NH, we do not
measure overheads of the existing NV technologies because
the NH is the component that only exists in the SDN-NV.
Therefore, the results presented in this section are overheads of
SDN-NV. There are several applications of SDN without NH
(non-virtualized SDN) on existing NV technology to enhance
network management [22]. The performance or overheads of
the application can be found in previous studies that measured
performance in non-virtualized SDN [23], [24], [25], [26].

B. NH Evaluation Results: Message Processing Delay

Figs. 5, 6, and 7 show the message processing delays of
PACKETIN, FLOWMOD, and PACKETOUT messages. For each
message, we analyze the delay by varying the experimental
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Fig. 7: Message processing delay (PACKETOUT).

variables (x-axis), so the subfigure (a) is the result of changing
the number of VNs, (b) switches, and (c) flows.

1) PACKETIN messages: In Fig. 5a, when the number of
VNs (x-axis) increases, the message processing delays have
little variance among the three comparative groups: 1.84 ms
on average. Also, when the number of switches (Fig. 5b)
increases, the delays are similar between comparative groups:
4.65 ms on average. When the number of flows increases (Fig.
5c), address mapping and TID embedding show approximately
constant delays (1.02 ms on average), but locator embedding
shows much longer delays (2× higher than both address
mapping and TID embedding).

We analyze further details when the number of flows
increases. The delay for PACKETIN depends on the number
of host addresses because for each PACKETIN message, NH
looks up the objects that represent the hosts: virtual addresses
(address mapping), corresponding TID (TID embedding), or
LITE values (locator embedding). Such lookup delay increases
as the number of objects increases. However, according to
Table III, the number of the total hosts is identical, which
means that the delay is expected to be constant. That is
consistent with what Fig. 5a and Fig. 5b show. However,
for locator embedding, the delay increases up to 39% (when
comparing 10 and 200 flows).

Regarding the locator embedding, we find that the semantics
in matching fields of SDN controller and NH make the
difference. The PACKETIN message triggers the flow rule
installations for packet forwarding. The locator embedding in
NH distinguishes the flow rules from the SDN controller by
generating flowID, which is a hashed key for the addresses in
the flow rules. However, the locator embedding creates flowID
keys without transport layer addresses and is only based on
the data link and IP layer addresses. Our SDN controller
creates flow rules to match the port addresses of the transport
layer. This leads to mismatching flow rule processing between
the SDN controller and NH. In other words, flow rules are
created from the SDN controller, but they cannot be interpreted
correctly in NH. Thus, they are not installed correctly at the
physical switches. Accordingly, the PACKETIN messages are
generated repeatedly from the physical switches, which results
in the high delay in Fig. 5c. We present the optimization results
on this problem and show that the processing delay can be
significantly reduced to a level similar to those of address
mapping and locator embedding (§IV-D).

2) FLOWMOD messages: The FLOWMOD message (Fig. 6)
is used for installing or modifying new flow rules. In Fig.
6a, when the number of VNs increases, the processing delay



decreases by up to 39%, 41%, and 23% for 10 and 70 VNs,
respectively, for address mapping, TID embedding, and locator
embedding4. This decrease is somewhat surprising because
the bottleneck for NH and message processing delays could
increase as the number of VNs. This experiment sets the
number of flows to 70 (Table III). Thus, as the number of
VNs increases, the number of flows that each VN processes
becomes smaller because 70 flows are distributed equally to
each VN. Accordingly, the flow rules for each virtual switch
are reduced, which contributes to reducing the delay of NH.

In Fig. 6b, when the number of switches increases, address
mapping and TID embedding show relatively constant delay—
5.2 ms and 3.7 ms on average, respectively. The delays of
the two comparative groups do not increase because NH we
use (Libera) parallelizes the flow rule processing. NH handles
each flow rule with a separate thread. Therefore, as long as
CPU is not the bottleneck, flow rule processing is not affected.
However, in the case of locator embedding, the delay increases
linearly—up to 3.57× when the number of switches grows 10
to 100. This is because locator embedding processes flow rules
when a set of rules composing a path is all arrived at NH; thus,
the delay increases as the number of switches composing a
path increases.

In Fig 6c, as the number of flows increases, the process-
ing delays of all comparative groups increase—from 10 to
200 flows, 2.19×, 2.47×, and 4.69× times, respectively, for
experimental variables. The experiments use a single VN with
20 switches (Table III). The reason for the increase is the
increased flow rules in the NH with the number of flows, which
results in the delay increase.

3) PACKETOUT messages: The PACKETOUT message is
used to inject packets into the network in order to deliver
data packets to the destination host. During the flow rule
installation, the packet forwarding in data plane can pause
when network switches do not have flow rules; so, through
PACKETOUT, NH tries to reduce such pause in packet for-
warding. In Fig. 7, for all varying experimental variables (i.e.,
VNs, switches, and flows), the delays are quite constant for
address mapping and TID embedding. For locator embedding,
the delays are constant for the increasing number of VNs
and switches. However, when the number of flows increases,
locator embedding shows the delay increased up to 1.5 ms
(50% higher than that of the 10 flows). The result comes
from the semantic difference problem of locator embedding
described above.

C. NH Evaluation Results: CPU Cycle

Fig. 8 shows the CPU cycles consumed in NH when the
three messages are being processed. The CPU cycles are
measured along with the experiments for Figs. 5, 6, and 7.
When the number of VNs changes (Fig. 8a), the cycles of
address mapping and TID embedding are similar: 17.4% and

4Note that locator embedding does not immediately process individual flow
rules independently and install them at once after gathering all flow rules
constituting a path (§II-B). Thus, the delay for locator embedding includes
installing a set of flow rules for composing a path.
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Fig. 9: Optimized locator embedding.

16.26% on average, respectively. Locator embedding shows
34.4% average CPU cycles, much higher than the other two.
It is because locator embedding has to track the source and
destination hosts and their attached switches to generate LITE
values (§II-B).

In Fig. 8b, when the number of switches increases from
10 to 60, all three comparative groups show increasing CPU
cycles (2.15×, 2.43×, and 1.98× higher for address mapping,
TID embedding, and locator embedding, respectively). How-
ever, when the number of switches increases from 80 to 100,
the comparative groups show relatively constant CPU cycles—
1.81 cores, 1.48 cores, and 1.37 cores, on average, for address
mapping, TID embedding, and locator embedding.

The main reason for the constant CPU cycles is the topology
discovery where NH regularly updates the topology (e.g.,
link connections between switches and hosts) through echoing
switches. For echoing, NH and switches exchange a small size
of TCP packets (e.g., 190 bytes on average) in a very short
time (mostly within 50–110 ms). In cloud computing, this kind
of network communication is known as “short-lived TCP,” and
it is well-known that networking stacks of operating systems
become bottlenecked with the high number of short-lived TCP
packets [27]. In our experiments, 60 switches used in the
experiments cause the bottlenecks on the networking stack,
so the CPU cycles of NH is dominated by the underlining
kernel, not NH itself. Thus, the CPU cycles of NH become
constant values from the 60 switches.

In Fig. 8c, the CPU cycles increase with the number
of flows. The CPU cycles of 10 and 200 flows increase
by 0.8×, 0.5×, and 10×, respectively, for address mapping,
TID embedding, and locator embedding. Note that the high
increase of locator embedding is due to the flow rule semantic
difference.

D. Optimization on Locator Embedding

Herein, we introduce optimization on locator embedding
that solves its semantics problem (§IV-B1). We modify the
flowID implementation of Libera’s locator embedding so that



the new implementation includes port addresses (transport
layer) in addition to MAC and IP addresses. The modifications
include additional improvements, such as the elimination of
redundant table lookup and unnecessary loggings. Except
for the flowID creation, other operations in Libera (such as
managing ARP and physical flow rule creation) are based on
IP addresses without considering port addresses. We do not
change any operation of Libera, but only modify the code for
handling flowID.

Fig. 9 shows the enhanced results on locator embedding.
Fig. 9a, Fig. 9b, and Fig. 9c show PACKETIN processing
delay, PACKETOUT processing delay , and CPU cycles. The
line with circles represents the evaluation results with the
old locator embedding, and the line with * marks represents
the ones with our newly modified locator embedding. In
Fig. 9a and Fig. 9b, PACKETIN and PACKETOUT delays
of the new locator embedding show relatively constant val-
ues (1.47 ms and 0.82 ms, respectively, on average) while
PACKETIN and PACKETOUT delays of the old locator em-
bedding continuously increases. Specifically, the new locator
embedding improves the processing delay of PACKETIN and
PACKETOUT by about 32% and 31% on average, respectively
which becomes similar to that of address mapping and TID
embedding. In Fig. 9c, the CPU cycle of the new locator
embedding shows constant values (36.5% on average), which
is 7.3× lower than existing locator embedding on average and
similar to address mapping TID embedding.

V. CONCLUSION

The goal of this paper is to investigate the performance and
overhead of SDN-NV comprehensively. We run a large number
of benchmarks to evaluate SDN-NV with varying numbers
of switches, flows, and VNs. Then, we compare the results
with existing NV technologies. Contrary to the popular belief
that SDN-NV has little practical value due to its overheads,
this paper reports that in the data plane performance, SDN-
NV is competitive over the existing NV technologies like
overlay, and sometimes it is even superior to them. In addition,
even when the number of VNs, switches, or flows increases,
our results show that the overheads of NHs mostly remain
constant. We hope our benchmarking results make a case for
SDN-NV to be adopted in cloud datacenters.
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