
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Intelligent Packet Processing for Performant
Containers in IoT

Wonmi Choi*, Yeonho Yoo*, Member, IEEE, Kyungwoon Lee, Zhixiong Niu, Peng Cheng, Yongqiang Xiong,
Gyeongsik Yang, Member, IEEE, and Chuck Yoo, Member, IEEE

Abstract—This paper explores the computing and communi-
cation overhead of network processing in IoT devices, focusing
on containers, a major building block for edge computing. Our
experiments reveal that containers on IoT devices suffer ∼2.6×
higher CPU usage for SoftIRQ processing, ∼59% less network
throughput, and 2× higher per-packet latency on average than
native processes. While several existing studies enhance net-
working performance, they often sacrifice interoperability by
requiring special hardware or modifying networking semantics
or APIs. Thus, we design and implement a kernel networking
accelerator, called SCON, that maintains interoperability, crucial
for IoT devices. SCON addresses major bottlenecks in container
networking through system-level profiling. We evaluate SCON
with three types of IoT devices. On the Raspberry Pi 4, SCON
reduces the latencies of major IoT application protocols (e.g.,
HTTP and MQTT) by ∼10×, achieving a similar level of
latency to the native process. Further analysis shows that SCON
reduces CPU usage for SoftIRQ processing by ∼26%. We also
report similar improvements on the other two IoT devices. Our
conclusion is that SCON is unique in significantly reducing the
computing and communication overhead of container networking
in IoT devices while maintaining interoperability. Furthermore,
it works consistently across different types of devices, whether
wired or wireless, and regardless of heavy or sporadic traffic.

Index Terms—Container Virtualization, Device Virtualiza-
tion, Efficient Communications and Networking, Resource-
Constrained Networks, Real-Time Systems.

I. INTRODUCTION

THE Internet of things (IoT) is a substantial paradigm
that interconnects physical objects, devices, and systems

through the Internet [1], enabling data collection from diverse

*Wonmi Choi and Yeonho Yoo are co-first authors.
This research was partly supported by Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (NRF-2021R1A6A1A13044830), by the NRF grant
funded by the Korea government (MSIT) (NRF-2023R1A2C3004145, RS-
2024-00336564), by ICT Creative Consilience Program through the Institute
of Information & Communications Technology Planning & Evaluation grant
funded by the Korea government (MSIT) (RS-2020-II201819), and by the
Google Cloud Research Credits program. (Corresponding authors: Gyeongsik
Yang and Chuck Yoo.)

W. Choi, Y. Yoo, G. Yang, and C. Yoo are with the Department of Computer
Science and Engineering, Korea University, Seoul 02841, Republic of Korea
(e-mail: ymcui@os.korea.ac.kr, yhyoo@os.korea.ac.kr, g yang@korea.ac.kr,
chuckyoo@os.korea.ac.kr)

K. Lee is with the School of Electronics Engineering, Kyungpook National
University, Daegu 41566, Republic of Korea (e-mail: kwlee87@knu.ac.kr)

Z. Niu, P. Cheng, and Y. Xiong are with the Microsoft Research, Bei-
jing 100080, China (e-mail: zhniu@microsoft.com, pengc@microsoft.com,
yqx@microsoft.com)

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

sources, analysis, and autonomous decision-making. Specifi-
cally, the collected data in the IoT concept has enabled the
emergence of smart industries, such as smart factories, smart
homes, and smart farms, by creating intelligent and responsive
environments that enhance operational efficiency and user
experience [2], [3]. For instance, in a smart factory, a large
volume of data is collected from various sensors to have direct
real-time feedback control for efficient management of the
manufacturing process [4]. This control mechanism relies on
the use of IoT with low latency and high-performance commu-
nication [5], [6], [7], [8]. Similar requirements apply to other
industries where efficient IoT environments of communication,
control, and computing are crucial.

In order for IoT devices1 to efficiently run various customer
applications, containers have become the most popular envi-
ronment of choice [11]. Containers provide a lightweight way
to virtualize IoT devices with resource constraints because the
containers run as user-level processes on the host operating
system and share its system binaries, unlike other virtualization
schemes (e.g., virtual machines) [12], [13]. For containers
running in IoT devices, one of the most crucial performance
aspects is networking because the significant role of IoT
devices is to receive and send data to and from edge clouds
continuously [14], [15], [16], [17]. For example, IoT devices
with camera sensors in autonomous driving continuously send
road videos to the edge cloud for real-time analysis of the
road’s surroundings [14]. Also, IoT devices are used to re-
peatedly measure patients’ vibration data and send the data to
edge servers for real-time emergency monitoring [15], [16].
All these examples necessitate high network performance of
containers along with low latency and less CPU usage.

However, on IoT devices, existing container technolo-
gies face significant challenges in networking performance.
Our motivating experiments, conducted on representative IoT
devices using Linux and Docker—the de facto container
runtime—highlight the challenges (see §III in detail). First, in
a container, the CPU usage for packet processing (SoftIRQ) is
∼2.6× higher than that of a non-virtualized process (native).
Second, the network throughput of a container is ∼59% worse
than that of the native. In addition, per-packet latency is also
2× higher compared to the native on average. Given that IoT
devices have limited power and CPU resources [11], [13], [18],
these high CPU usage and poor throughput and latency are
significant challenges.

1The IoT devices that this paper focuses on are any devices that can run
a standalone operating system and multiple Docker containers, such as the
Raspberry Pi 4, as covered in many other previous IoT studies [8], [9], [10].

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Previous research has proposed various techniques to en-
hance the networking stack of containers [19], [20], [21], [22],
[23], but these techniques have limitations when applied to IoT
devices. First, most existing approaches have hardware depen-
dency or significant semantic changes, which makes them not
easily applicable to IoT devices. For example, DPDK [22]
processes packets at the user level and bypasses the kernel.
However, it requires a specialized network interface card (NIC)
that is not commonly supported in IoT devices [24]. Also,
AF GRAFT [19] changes the packet processing semantics
in the kernel, so the APIs for the networking from the
applications are changed. This means that all the applications
should be re-compiled and tested to use the changed APIs. For
some cases, it can be acceptable to get accelerated networking
performance, but not desirable for IoT devices where inter-
operability (ease of use) is more valuable than performance
boost.

Second, previous studies have yet to address the specific
needs of IoT traffic. Some IoT traffic consists of small mes-
sages, typically less than 200 B and ranging from 32 B to 256
B [25], [26]. Our motivation experiments with Slim [21], the
latest open-source research, show that it cannot enhance the
throughput of small IoT messages sufficiently. This implies
that existing studies may not be designed to take care of the
IoT traffic (§III). Considering the growing importance of edge
computing with IoT, container networking needs attention on
small IoT messages.

Our study presents a kernel accelerator, called SCON, for
IoT devices. The design goal of SCON is not to have any
hardware dependency nor modify the semantics changes in
APIs. The design of SCON starts with profiling the root causes
of the severe bottleneck in processing messages in containers.
By profiling the bottlenecks of the networking stack per
function, this study reveals that the primary bottlenecks of
containers are located in the Internet protocol (IP) layer, where
additional Netfilter, header processing, and routing lookup
operations are performed for containers (§IV).

SCON addresses the uncovered root causes by introducing
SCON express forward, which intelligently memorizes the
decisions on packet processing for recently seen connections in
the kernel (§V-A). The SCON design has four components—
Contable, Confilter flag, SCON composer, and SCON flusher
(§V-B). Note that SCON maintains the original kernel se-
mantics and socket semantics, so there is no need for any
legacy application to be re-compiled or re-tested. Also, the
SCON design is entirely kernel-based without any hardware
dependency.

We implement SCON in the recent Linux (version 5.10) and
conduct experiments with Raspberry Pi 4, a representative IoT
device [27], [28]. We use Docker as the container runtime. The
major contributions of this paper are as follows:
• Through in-depth system-level profiling, we identify the

challenges of IoT containers: high CPU usage and poor
networking performance (e.g., throughput) and we find that
the root cause is in the packet processing sequence (e.g.,
Netfilter, header processing, and routing lookup).

• We design and implement SCON, a kernel accelerator to
overcome these three challenges. Unlike existing studies,

SCON does not require additional hardware support and
maintains interoperability with legacy applications and
devices.

• Through micro-benchmark evaluations, we show that
SCON improves CPU usage and network performance for
messages over TCP by ∼26% and ∼45%, respectively,
and messages over UDP by an average of 33% and 31%,
respectively, compared to the containers.

• We also demonstrate that SCON is scalable with multi-
ple containers, specifically, as the number of containers
increases from one to four, the throughput across message
sizes increases by 4.2× on average.

• Through evaluation on real-world application protocols
(e.g., HTTP and MQTT), SCON demonstrates effective-
ness at both streaming and sporadic IoT traffic by improv-
ing latency by 48% on average and achieving a similar
level of latency to the native process.

• For three different types of IoT devices and wireless
connection, SCON consistently enhances CPU usage and
network performance compared to the containers, demon-
strating the interoperability of SCON.

For the rest of this paper, §II describes the background. §III
explains the motivation of this study, and §IV details the root
cause analysis of the results and our approach. §V presents
the SCON design. §VI shows the implementation of SCON
and its evaluations. §VII summarizes related works of SCON.
§VIII presents the discussion and future work, and finally, §IX
concludes this study.

II. BACKGROUND

This section provides the background on container network-
ing in IoT devices and its packet processing sequence.

A. Container Networking in IoT Devices

Containers have their unique IP addresses to ensure isola-
tion from other containers.2 The network switches or routers
connecting the hosts recognize only the host server’s IP
address. Thus, to deliver the packets generated from containers
across hosts, existing container platforms utilize one of two
techniques: network address translation (NAT) or overlay.

NAT. Each host manages a NAT table that maps container
addresses to host addresses. Based on the mappings, NAT
modifies the packet headers by replacing the container IP with
the host IP. So, packets traversing the external network carry
the host addresses, and switches and routers can recognize and
correctly deliver them between hosts.

Overlay. Overlay utilizes additional headers. Container
packets from the source host are encapsulated with addi-
tional headers, such as virtual extensible local area networks
(VxLAN) or IP-in-IP, and then decapsulated at the destination
host. The external network delivers the packets based on
the host addresses in the additional header. Although overlay
successfully delivers the container packets across hosts, it is
known that overlay incurs bigger overheads in CPU cycle and

2Containers can share an IP address of a host (known as host mode),
but their network packets are not isolated. So, in real-world scenarios, most
container platforms assign unique addresses to containers.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Host

IP layer

Link layer

External
network

sock_sendmsg

ip_queue_xmit
dev_queue_xmit
ndo_start_xmit

tcp_sendmsg

(a) Native Linux.

Host

ip_queue_xmit
dev_queue_xmit

veth_xmit

sock_sendmsg
tcp_sendmsg

ip_forward

dev_queue_xmit
ndo_start_xmit

ip_output

ip_rcv
br_handle_frame

External
network

Container

(b) Container.

Fig. 1. Packet processing sequence comparison. Containers have a longer
sequence than native Linux.

latency than NAT [29]. This is because the overlay requires the
overhead for packet en/decapsulation processes. Also, when
the packet size becomes bigger, the packet can be fragmented
when the encapsulated packet size exceeds the maximum
transmission unit (MTU), which is a non-trivial operation for
IoT devices. Thus, for IoT devices with a limited amount of
computing resources, NAT is the preferred choice [30], [31],
[32].

Various container platforms, such as Docker [33], LXC [34],
and OpenVZ [35], utilize a bridge network. There are a few
other techniques that deploy alternatives to the bridge, such
as Open vSwitch [36], but their role is identical to that of a
bridge. Since the NAT operation with a bridge network is the
de facto standard in container networking with IoT devices,
our focus is on the NAT with the bridge.

B. Packet Processing Sequence

Fig. 1 shows the summary of packet processing sequences of
native Linux and containers. We explain transmission control
protocol (TCP) packet processing as an example due to its
prevalent use in IoT devices and its comprehensive packet
processing capabilities, such as connection establishment, reli-
able packet delivery, and congestion control mechanisms [37],
[38], [39]. While user datagram protocol (UDP) can also be
used in IoT applications, it is much simpler than TCP, so we
use TCP to explain the background of this paper. Note that
the processing in the physical network interface, link, and IP
layers are identical between TCP and UDP.

We first look into the functions of the native Linux in
Fig. 1a. A packet from the user application passes through
several network layers in the following order: socket layer
(sock_sendmesg), TCP layer (tcp_sendmsg), IP layer
(ip_queue_xmit), link layer (dev_queue_xmit) to add
packer header for data transmissions. Then, the packet is trans-
mitted to the network interface layer (ndo_start_xmit)
and finally transmitted to the external network.

Next, in Fig. 1b, for the containers, the functions in the
TCP and IP layers are the same as the native Linux. However,
in the link layer of containers, dev_queue_xmit transmits

the packet to veth (veth_xmit) instead of the actual network
device of the host. veth is a virtual network interface assigned
to each container by default, which provides an isolated
network address space. Each veth has unique media access
control (MAC) and IP addresses so the containers can be
distinguished.

The packet passing through the veth is delivered to the
bridge (br_handle_frame), which connects veth of con-
tainers and the host kernel. The bridge then forwards the
packet to corresponding physical network interfaces that lead
to another IP layer processing: we call it the second IP
layer. In the second IP layer, ip_rcv, ip_forward, and
ip_output functions are called in order. This call chain
involves routing lookups that determine the proper destination
IP of the packet and Netfilter operations that decide whether
to forward the packet. Especially, NAT is conducted by the
Netfilter hook in the ip_output in the IP layer that changes
the source IP address of the packet from the IP address of the
container to that of the host. After NAT from the second IP
layer, the packet is delivered to the actual network interface
of the host server (dev_queue_xmit), and the packet is
finally transmitted (ndo_start_xmit). Please refer to the
Appendix for a more detailed packet processing sequence.

Through the analysis of the packet processing sequence,
we find that the networking processing sequence of contain-
ers depicted in Fig. 1b has additional function calls in the
bridge (e.g., br_handle_frame) and IP (e.g., ip_rcv and
ip_output) compared to the native Linux in Fig. 1a. In the
next section, we demonstrate how these additional calls impact
networking performance.

III. MOTIVATION

This section presents the motivating experiments that
demonstrate the three significant challenges of IoT containers:
1) inefficient CPU usage in IoT devices, 2) poor throughput
and latency in IoT devices, and 3) inadequacy of existing
acceleration techniques.

Experiment setting. We show the challenges of IoT con-
tainers through various experiments. For experiments, we use
a Raspberry Pi 4 as our IoT device as it is a widely-used
IoT device [13], [27], [28], [40]. It is equipped with an ARM
Cortex-A72 64-bit quad core@1.5GHz CPU, 8GB of RAM,
and a 1000 Mbps Ethernet chip. It runs Linux version 5.10
and constructs containers by Docker runtime version 20.10.

The Raspberry Pi is connected to an edge cloud server
(server machine) by 1000 Mbps Ethernet. The server machine
is equipped with an Intel i7-3770K octa-core@3.5GHz CPU
with 64GB memory and a 256GB SSD. The server runs Linux
version 5.4. We generate TCP traffic from a container on
Raspberry Pi to the server machine, using iperf [41], the most
popular network benchmark on IoT system evaluation [18],
[42], [43]. Unless otherwise specified, we use the experiment
settings described here throughout this paper.

For comparison, we also experiment with the “native” on
an identical IoT device with the same settings (e.g., iperf). We
present experiment results using one CPU core for the con-
tainer, which is a typical specification of resource-constrained

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

32 64 128 256 512 1K0
20
40
60
80
100

Native SoftIRQ

Message size (B)

User
System Container SoftIRQ

C
PU

 u
sa

ge
 (%

)

(a) CPU usage.

32 64 128 256 512 1K0

100

200

300

400

Container
Native

Message size (B)

Th
ro

ug
hp

ut
(M

bp
s)

(b) Throughput.

32 64 128 256 512 1K0

20

40

60

La
te

nc
y

(u
s)

Message size (B)

Native Container

(c) Per packet latency (average).

32 64 128 256 512 1K0

50

100

150

200

La
te

nc
y

(u
s)

Message size (B)

Native Container

(d) Per packet latency (99% tail).

Fig. 2. Challenges of SCON: inefficient and poor CPU usage, network throughput, and latency of containers on IoT devices.

IoT environments [44]. We have also conducted experiments
with a higher number of cores (up to four cores), which show
similar trends to the following results; so, we omit them.

Challenge 1: Inefficient CPU usage in IoT devices. We
first evaluate the CPU usage (Fig. 2a) in IoT devices. We
increase the size of the message over TCP from 32 B to 1
KB (x-axis) to cover the full range of typical IoT traffic. For
example, message sizes from 32 B to 256 B are commonly
generated by smart sensors like bulb and temperature sensors
[25], [26]. Message sizes from 512 B to 1 KB are seen in smart
cameras and smart speakers [45]. We measure the CPU usage
of User, System, and SoftIRQ by mpstat [46] and compare
the measurement results between the container and the native
process.

In Fig. 2a, we observe that both the native and the container
in IoT fully utilize the CPU, but the detailed usage is different
between the two. Specifically, the CPU usage of the container
for SoftIRQ processing is significantly higher compared to
the native. For instance, when processing 1 KB messages, the
container networking incurs ∼2.6× higher CPU usage than the
native for SoftIRQ processing. These results negatively impact
the network throughput because fewer CPU resources become
available for processing at the system level that handles
system calls and at the user level that generates packets. This
inefficient CPU usage poses a significant challenge for IoT
devices, especially because many are battery-powered and,
therefore, highly sensitive to CPU usage.

Challenge 2: Poor throughput and latency in IoT devices.
Next, we evaluate network throughput and latency for IoT
devices. Fig. 2b displays network throughput increase with
message size. For 1 KB messages, in particular, the network
throughput of the container is reduced by ∼59% compared
to the native. On average, the container has 44% lower
throughput than the native.

We also evaluate per packet transmission latencies in terms
of average and 99% tail values measured by Netperf [47].
The results show that both the average and the 99% tail
latency values increase. Specifically, in Fig. 2c and Fig. 2d,
the container increases the average latency by 2× and the 99%
tail latency also by 2× on average. Although the difference
is not large in terms of the absolute value (40 µs), this
difference is still problematic for IoT devices used in remote
health monitoring, and factory control, which require real-time
communication in microseconds because such difference may
damage finely calibrated machinery [48]. Also, industrial IoT
systems require latencies of microsecond level (less than 1 ms)

32 64 128 256 512 1K0

100

200

300

400

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) Native Container

Slim

Fig. 3. Comparison of traditional container environment and networking
acceleration technique (Slim) on an IoT device.

and jitter under 100 µs [49]. Thus, even microsecond delays
can impact synchronization and precision control, potentially
leading to defects or failures in real-time IoT systems.

Challenge 3: Inadequacy of existing acceleration tech-
niques. Because the containers draw significant attention from
the datacenter perspective, various networking acceleration
studies have been carried out. However, the studies are in-
adequate for IoT devices due to the following reasons.

First, existing studies lack interoperability for heterogeneous
IoT devices. In order to accelerate networking, several studies
changed kernel semantics in packet processing (e.g., kernel
bypassing and user-level processing) [19], [22], and it requires
modifications to the socket APIs of all legacy applications.
This implies that considerable development efforts are required
to adapt these techniques to various heterogeneous IoT appli-
cations.

Other studies have proposed the use of additional hard-
ware (e.g., RDMA NIC or DPDK NIC) to offload network
processing [20], [22], [50]. However, to our knowledge, it
is unclear whether such NICs are readily available in IoT
devices. Therefore, although these techniques can improve the
networking performance, they may not provide interoperability
for heterogeneous IoT devices that lack the necessary hardware
support.

Second, such studies do not sufficiently accelerate IoT traf-
fic. We experiment with the performance of the open-source
acceleration technique, Slim [21], the latest and representative
method that bypasses parts of the networking stack without
requiring specialized hardware. On IoT devices, we evaluate
Slim using iperf, which is the only benchmark we found to
be compatible with Slim on IoT devices. Note that Slim in-
cludes a custom library for running legacy Linux applications.
However, due to changes in packet processing semantics (host
bypassing), this library does not fully support native system

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

calls (e.g., accept). We tried to run IoT traffic applications
on Slim but it requires modifications. So, we present the iperf
results here.

We compare the throughput between the native, Slim, and
the container. First, for large messages of 512 B and 1 KB,
Fig. 3 shows that Slim improves network throughput by 66%
than the container on average. When compared with the native,
Slim shows only 14% lower throughput on average. However,
for small messages ranging from 32 B to 256 B, Slim shows
quite poor throughput values compared to the native, with
59% decrease on average. Even compared to the container,
Slim performs poorly by 34% on average. The results indicate
that existing techniques such as Slim are designed for the
acceleration of large traffic [21], but small IoT messages do
not gain the improvements. This highlights the need for a
new accelerator to cover the diverse IoT messages in container
networking.

IV. ROOT CAUSE ANALYSIS AND OUR APPROACH

To design a new accelerator for IoT devices and traffic, we
investigate the underlying causes of inefficient and poor CPU
usage, network throughput, and latency. We analyze the IoT
container networking stack using the ftrace [51]. Specifically,
we measure the time it takes to process each function symbol
in the networking stack of IoT containers when sending 64 B
messages over TCP.

Fig. 4a depicts the measurement results for the key functions
involved in packet processing in container networking, as
discussed in §II. The results indicate that the time required
for processing a single message in the container is twice as
high as the native. We find this is because the container net-
working stack requires “additional” processing, such as bridge
layer (br_handle_frame), the second IP layer (ip_rcv),
and veth/eth (dev_queue_xmit and veth_xmit), which
are discussed in §II. Note that other parts in the container
networking stack, such as TCP and IP layers, consume similar
amounts of CPU time to the native environment.

The results show that the IP layer in the additional process-
ing accounts for the largest portion (63%). So, we conduct
further analysis on the packet processing in the IP layer. We
measure the CPU cycles spent for every symbol and categorize
them into the following operations: Netfilter, header process-
ing, routing lookup, and packet validation. Each category
implies the following operations:

• Netfilter: the packet filtering offered by the Linux kernel.
Netfilter also includes NAT processing that changes the
packets’ source IP address of containers to the host server
in order to enable external networking. The default con-
figuration is used in our experiments.

• Header processing: recompute the time-to-live (TTL) field
and checksum values and re-allocate the packet header to
expand the size of the header for NAT.

• Routing lookup: determine the corresponding network in-
terface of the packet to be transmitted.

• Packet validation: check whether the packet is local or
remote in the Linux bridge.

Container Native0

20

40

60

80

Pr
oc

es
sin

g
tim

e
(u

s)

sys_write()
tcp_sendmsg()
ip_queue_xmit()
dev_queue_xmit()
veth_xmit()
br_handle_frame()
ip_rcv()
dev_queue_xmit()

(a) Profiling results on the network processing.

0

25

50

75

100

No
rm

al
ize

d
CP

U
cy

cle
s

(%
)

Header processing
Netfilter

Routing lookup
Packet validation
etc.

(b) Overhead breakdown of the additional IP layer.

Fig. 4. Profiling results on the network processing in Container environment.

Fig. 4b shows that the sum of Netfilter, header processing,
and routing lookup occupies 94% of the CPU cycles in the ad-
ditional packet processing. Our deep analysis reveals that these
three operations consume such a large amount of CPU cycles
due to the following reasons. First, Netfilter performs NAT
table lookup for the external networking between containers.
Also, Netfilter implements filtering policies for firewalls or
security reasons, which includes iptables lookup according to
the policies. We find that Netfilter requires expensive spin-lock
operations, resulting in high CPU overhead. Furthermore, the
additional IP header processing is carried out for the second
IP layer processing. Also, routing requires a lookup over data
structures (trie) for every received packet to find the proper
destination.

Netfilter, header processing, and routing lookup are con-
ducted repeatedly for every packet, even though a container
transmits packets with the same source and destination pair.
So, when IoT devices transmit the burst traffic, it signifi-
cantly drains the CPU, and results in throughput and latency
degradation. So, in this study, we design a kernel accelerator
on the three high-overhead operations: 1) Netfilter, 2) header
processing, and 3) routing lookup. The goals of the SCON are
summarized as follows:
• Reduce repetitious resource consumption while improving

the networking throughput and latency for IoT network
traffic.

• Design a networking acceleration technique without any
hardware offloading supports for IoT devices.

• Avoid kernel semantics changes or API changes resulting
in application re-implementation.

V. SCON DESIGN

This section presents a detailed design of SCON that offers
high network performance with efficient CPU usage on IoT

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Container

Contable SCON
composer

SCON
flusher

SCON
regular
forward

SCON
express
forward

Containers

SCON
path

SCON
components Confilter

flag

Network interface

Packet processing sequence
SCON intelligence (remember decisions)

Packet

Fig. 5. SCON design overview.

devices. Fig. 5 shows the design of SCON. In order to
eliminate the high-overhead operations observed in §IV, we
devise “SCON path” that consists of SCON regular forward
and SCON express forward, and they add “intelligence” to
the container packet processing in order to avoid repetitious
operations in Netfilter, header processing, and routing lookups.
The intelligence of SCON is to remember the decisions on
packet processing (e.g., routing table lookup results) in SCON
regular forward for recently seen connections.

Specifically, when the packet from a container is delivered
to the Linux bridge, SCON distinguishes which routine is
suitable between SCON regular forward and SCON express
forward to process the packet. If the packet belongs to a
newly generated connection between source and destination
containers (identified by 5-tuple information including the
source and destination IP and port addresses with the L4
protocol identifier), it goes to the SCON regular forward. If
the packet belongs to a network connection that SCON has
already seen recently, it goes to the SCON express forward.

However, identifying the 5-tuple information of every in-
coming packet without hardware offloading and API modi-
fication can cause significant overhead in the Linux bridge
as the Linux bridge handles packets from multiple containers
simultaneously. In order to reduce the cost of packet identi-
fication, we introduce the following SCON components: 1)
Contable and Confilter flag as per-container structures for
packet processing and 2) SCON composer and SCON flusher
for allocating and managing Contable. In the following sub-
sections, we explain the SCON path and SCON components
one by one.

A. SCON Path

We first explain the SCON regular forward of SCON path
where a packet follows the call chain of the original Linux
networking stack (Fig. 6). While traversing the call chain,
SCON detects the packet and collects the packet processing
results from Netfilter, routing lookup, and header processing,
as listed below.

ip_rcv

ip_forward

ip_output

NF_INET_PRE_ROUTING

NF_INET_FORWARD

NF_INET_POST_ROUTING

Container

Network interface

Contable
lookup

scon_express_
forward

SCON_EXPRESS_
NETFILTER

Contable
update

SCON
express forward

SCON
regular forward YesNo

Netfilter hookSCON composer Function

Fig. 6. SCON path details.

• Netfilter: the results of NF_INET_PRE_ROUTING,
NF_INET_FORWARD, and NF_INET_POST_ROUTING.

• Routing lookup: IP and MAC addresses of the next-hop.
• Header processing: MTU size, TTL value, and L3 protocol

ID.
After the packet has passed through the call chain, SCON
“memorizes” the collected packet processing results in a store
called Contable (to be explained in §V-B1) along with the
identifier of the network connection (5-tuple values) to which
the packet belongs.

Next, the SCON express forward avoids repetitious packet
processing by utilizing the Contable configured in the pre-
vious SCON regular forward. The SCON express forward
consists of two parts: 1) scon_express_forward and
2) SCON_EXPRESS_NETFILTER. Compared to its native
counterpart, scon_express_forward offers lightweight
alternatives for packet header processing and routing lookup,
and SCON_EXPRESS_NETFILTER for Netfilter processing.
scon_express_forward retrieves the results stored

in Contable and fills the packet with the necessary header
information (e.g., the result of routing lookup, TTL value, and
MTU size). It also performs the essential checksum operation
and sends it to the next SCON_EXPRESS_NETFILTER.

In SCON_EXPRESS_NETFILTER, SCON reduces the
overheads of Netfilter processing (e.g., repetitious spin-locks
for structure lookup, §IV) by memorizing the Netfilter de-
cision stored in the Contable. The decisions from Net-
filter are the following two actions: 1) success and 2)
discard. Success means that the packets are ready to go
out immediately (including source NAT processing), so the
SCON_EXPRESS_NETFILTER sends the packets to the net-
work interface. Discard means that the packet should be
dropped due to a security breach or firewall policies set by
system administrators.

To ensure the SCON path operates as intended, Contable
structures should be allocated and created at the proper time to
store connection information intelligently. Also, it is necessary

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Contable 1 (for container 1 attached to port 1)

Network interface
(e.g., eth0)

Linux bridge
 (e.g., docker0)

Container
1

Port 1Conentry

- IP routing
- MAC routing
- L3 protocol ID
- Confilter flag 1

Conentry

- IP routing
- MAC routing
- L3 protocol ID
- Confilter flag 2

Conentry

- IP routing
- MAC routing
- L3 protocol ID
- Confilter flag 3

Conentry 3 Conentry 2 Conentry 1

…

Container
2

Port 2

Fig. 7. Structure of Contable and Conentry.

to update the memorized connection information of Conentry
(§V-B4). Specifically, the Conentry of Contable needs to be
updated in two situations. First, if the Conentry is not accessed
within a specific time interval, it should be flushed. Second,
when an existing connection is refreshed (e.g., when a TCP
connection is closed and then restarted), the Conentry must
also be flushed and updated accordingly. SCON components
fulfill these roles, which will be explained in the following
subsection.

B. SCON Components

Here, we describe four components of SCON: 1) Contable,
2) Confilter flag, 3) SCON composer, and 4) SCON flusher.

1) Contable: The Contable structure is shown in Fig. 7.
Contable memorizes how the packet of the connection has
been processed by SCON regular forward. It also identifies
which SCON routine each packet should take. SCON main-
tains a separate Contable per container, which consists of
multiple Conentry structures managed as a linked list.

A Conentry is built and used for each connection. SCON
identifies both the Conentry and connection by the 5-tuple.
Each Conentry maintains 1) routing information (i.e., IP
routing, MAC routing, L3 protocol ID) and 2) Confilter flag.
The IP routing stores the destination network interface (i.e.,
struct net_device) of the packets, the TTL value, and the
MTU size of the corresponding interface collected from the
SCON regular forward. MAC routing stores the L2 information
of the next-hop server that receives the packets sent from the
host server. The L3 protocol ID is the IP protocol number re-
quired for the IP header. Confilter flag aggregates the Netfilter
operations and is a part of packet header processing, which
will be explained further in the next subsection.

2) Confilter flag: The Confilter flag of the Contable embeds
processing results from Netfilter and header processing. Net-
filter plays a role for users or system administrators to define
rules for malicious or filterable network connections. Also, for
normal network connections, Netfilter performs source NAT
for external communication. The result from Netfilter is either
1) success or 2) discard, as explained in §V-A.

During header processing, the packet header checksum is
calculated to detect any errors in the packet bits. Note that
these errors exist on a per-packet basis and do not persist over
the entire connection to which the packet belongs. The result
of the header processing can be classified into 1) pass (normal)
or 2) error (dropped).

When the packet (connection) is “success” from Netfilter
and is “pass” from header processing, SCON sets the Confilter
flag as “success.” In this case, the SCON regular forward

directly sends the packets to the network interface. If the
packet is discarded from Netfilter (regardless of the results of
header processing), SCON sets the Confilter flag as “discard”
and the SCON regular forward drops the packets. Lastly, when
the packet is considered “error” from header processing, the
packet coming at the next time goes through the SCON regular
forward so that the information of the Contable can be updated
with the packets. The Confilter flag of success, discard, and
go-to SCON regular forward is defined by integers (i.e., 1, -1,
and 0).

3) SCON composer: SCON composer is to construct the
Contable structure. When a packet is transmitted from a
container, the SCON composer looks up the Contable to check
if any Conentry matches the packet’s 5-tuple. If there is no
matching Conentry, it indicates that the packet belongs to
a new network connection that has not been seen before.
Therefore, the SCON composer allocates a new Conentry,
adds it to the Contable, links it to the previous Conentry, and
initializes its entries. After the packet goes through the SCON
regular path, the SCON composer updates the Conentry with
the memorized processing information of the packet.

4) SCON flusher: SCON flusher is responsible for remov-
ing Contable or Conentry structures that are no longer valid.
There are several situations in which these structures become
invalid. The first situation is when the corresponding container
is stopped or removed, in which case the Contable allocated for
the container will no longer be used. We design each Contable
to be dependent on the container’s interface (i.e., bridge port),
as the container’s interface is removed by the kernel when that
container is stopped or removed. So, the Contable is removed
together when the container goes down.

The second situation arises when the container stops trans-
mitting packets in the connection. To detect this, a timer peri-
odically checks the frequency of Conentry hits. If a Conentry
is not hit within the timer interval (e.g., 10 s), the SCON
flusher is activated to free the Conentry.

SCON flusher is also designed to take care of situations
where an existing connection is refreshed. When a TCP
connection is closed and then restarted, Conentry must be
flushed and updated accordingly. To detect this situation, the
SYN flag of the TCP packets is monitored. Note that this
monitoring is particularly important for IoT devices because
TCP-based protocols such as MQTT/HTTP heavily use short-
lived messages for energy efficiency [52], [53], [54], [55].

VI. IMPLEMENTATION AND EVALUATION

We implement all the components of SCON on Debian
GNU/Linux 11 (bullseye) using Linux kernel version 5.10. The
implementation comprises 2K lines of C code. Additionally,
we provide a configuration option that disables the SCON. We
release the implementation of SCON on GitHub repository3.
The experimental settings are identical to those explained in
§III. We compare the native Linux process, container, and
SCON. Although we try to compare SCON with other existing
studies, they assume either special hardware support or their

3https://github.com/wonmi123/SCON.git

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Native Container SCON0
20
40
60
80
100

C
PU

 u
sa

ge

(%
)

SoftIRQSystemUser

(a) CPU usage.

Native Container SCON0

10

20

30

La
te

nc
y

(m
s)

(b) Average latency.

Fig. 8. [Real-world application protocols] HTTP scenario.

own API/semantics, making direct comparisons with SCON
unfeasible (details in §VII).

We conduct three sets of experiments: 1) real-world appli-
cation protocols, 2) micro-benchmarks, and 3) interoperability
on other devices and wireless networking. As real-world
application protocols, we evaluate the effectiveness of SCON
with 1) HTTP scenario and 2) MQTT scenario because most
IoT traffic is generated using HTTP or MQTT protocols [52],
[53], [54], [55]. For both scenarios, we measure the amount of
CPU cycles and job completion time of transmitting the IoT
traffic.

As micro-benchmarks, we first assess CPU usage and net-
work throughput by gradually increasing the message sizes
using TCP protocol from 32 B to 1 KB. This message
size range includes almost all IoT packets as explained in
§III. Second, we analyze the processing time per packet and
function symbol using detailed profiling similar to Fig. 4.
Third, we measure the flow completion time (FCT) for IoT
traffic and present the 99% tail values from the results. Fourth,
we report the performance of SCON with the UDP protocol.
Lastly, we examine the scalability of SCON’s throughput
values as the number of containers on an IoT device increases.
Each experiment is conducted at least five times and we report
the average values.

We also test the performance of SCON on different IoT
devices that have distinct CPU architectures and processing
speeds. In addition, we evaluate SCON in a wireless network
setting. The detailed device specifications and experimental
settings are explained together with the results in §VI-C.

A. Real-world Application Protocols

1) HTTP: We first test the HTTP performance of SCON
by running one Nginx [56] (version 1.23.2) on a Raspberry
Pi to create HTTP traffic. On the opposite side, we run
wrk2 [57] on the Intel server and mpstat [46] to measure
network performance and CPU usage.

In particular, for each connection from the IoT device, wrk2
spawns one thread and requests a 64 B HTML file. In smart
factories, smart cities, disaster management, and healthcare,
the number of messages per second increases exponentially
due to the interconnection of hundreds to thousands of IoT
devices [58], [59]. Also, IoT devices typically use HTTP
or MQTT protocols to collect and send massive amounts of
sensor data keeping real-time delivery and constant monitoring
[60]. Thus, we set the input as 2K requests/s to reflect these
scenarios, which is close to the upper limit of the container’s

Native Container SCON0
20
40
60
80
100 System SoftIRQUser

C
PU

 u
sa

ge
 (%

)

(a) CPU usage.

Native Container SCON0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

(b) Average latency.

Fig. 9. [Real-world application protocols] MQTT scenario.

capabilities in our setting. Also, we measure the CPU usage
through mpstat and HTTP latency from wrk2. Note that the
latency measured here is the time for sending a request and
receiving a corresponding reply. Each experiment lasts 10 s.

CPU usage. Fig. 8a shows the CPU usage breakdown.
Although the identical 64 B file is used for experiments,
native, container, and SCON show quite different CPU usage.
In comparison to the container, SCON reduces 19% of CPU
usage. In particular, SCON reduces 26% of CPU cycles spent
in SoftIRQ processing. As a result, the gap in total CPU
usage between native and container to achieve the required
throughput declines by 25% using SCON.

HTTP latency. Fig. 8b shows the average HTTP latency
reported by wrk2, which includes the times for an HTTP
request and reply. The bars represent average values, and
the whiskers represent ranges. The container exhibits much
more pronounced HTTP latency than the native, which is 14×
longer. On the other hand, SCON reduces the latency by 10×
compared to the container. Specifically, the latency difference
between the native and container is 1325%, while the one of
native and SCON is only 31%, which is 42× improvement.

2) MQTT: Next, we evaluate MQTT [61], a widely used
data streaming protocol in IoT. MQTT provides “MQTT
broker” that intervenes between the data publishers (e.g., IoT
devices) and subscribers (e.g., edge cloud servers). MQTT
broker then receives various data from publishers and delivers
it to proper subscribers.

For the experiments, we use the latest MQTT protocol of
version 5.0 [62]. Also, for the MQTT broker component, we
use Mosquitto application version 2.0.15 [63]. For the MQTT
publisher and subscriber, we use MQTTLoader version 0.8.6
[64]. Specifically, an MQTT publisher runs on a Raspberry
Pi, while a broker and a subscriber run on an Intel server. We
generate messages of 64 B data each from an MQTT publisher
(Raspberry Pi) using MQTTLoader. To reflect scenarios where
IoT devices process highly frequent requests, we experiment
by sending 1,000,000 messages within 60 seconds. The broker
receives the 1,000,000 messages and then delivers them to the
subscriber (Intel server).

We repeat the experiments at least five times and present the
average values. We measure CPU usage and MQTT latency.
MQTT latency includes the processing time from message
generation by the publisher to message reception by the
subscriber. The CPU usage is measured by mpstat, and the
latency by MQTTLoader.

CPU usage. Fig. 9a shows the CPU usage of MQTT
scenario. When comparing the native and container envi-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1 0.1 0.01 0.050.0010
2
4
6
8
10

La
te

nc
y

(m
s)

Transmission interval (s)

Native Container
SCON

Fig. 10. [Real-world application protocols] MQTT latency with various
message transmission intervals.

32 64 128 256 512 1K0

20

40

60

80

Message size (B)

CP
U

us
ag

e
(%

) ContainerNative
SCON

(a) CPU usage.

32 64 128 256 512 1K0

100

200

300

400

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) Native

SCON
Container

(b) Network throughput.

Fig. 11. [Micro-benchmark] CPU usage for SoftIRQ and network throughput
in TCP.

ronments, the container environment consumes much more
CPU cycles for packet processing (SoftIRQ), which is 2.2×
higher. Due to this high processing in SoftIRQ, the User
time of the container environment experiences a decrease in
CPU cycles (0.87×), resulting in poor performance as shown
in Fig. 9b. On the other hand, SCON reduces the SoftIRQ
consumption of containers by 24%, which leads to improved
MQTT performance.

MQTT latency. Fig. 9b shows MQTT latency. We depict
the average value by bars and ranges by whiskers. When
comparing the native and container environments, the latency
of the container environment increases by 1.5×. On the
other hand, when comparing the container environment with
SCON, SCON reduces the latency by 31%. Moreover, when
comparing the native environment with SCON, the delay of
SCON is only 5% higher than the native environment (at
least 2%). The results show that SCON significantly improves
MQTT latency to the level similar to the native process. This
means that SCON greatly reduces the networking latency of
IoT application protocols by lowering CPU consumptions.

3) Transmission intervals on MQTT: Then, we evaluate
how SCON can handle various transmission request rates by
measuring the latency of MQTT. We vary the MQTT message
interval from 1 s to 0.001 s, so the number of requests
generated for each second ranges from 1 to 1000. All other
configurations are similar to those in §VI-A2.

Fig. 10 shows that, compared to the container, SCON
reduces the latency by 48% on average. In addition, SCON
exhibits only 7% longer latencies on average compared to
the native. The results show that SCON effectively improves
MQTT latency across a range of message transmission inter-
vals.

32 64 128 256 512 1K0

20

40

60

La
te

nc
y

(u
s)

Message size (B)

Native

SCON
Container

(a) Average latency.

32 64 128 256 512 1K0

50

100

150

200

La
te

nc
y

(u
s)

Message size (B)

Native Container
SCON

(b) 99% tail latency.

Fig. 12. [Micro-benchmark] Per packet latency.

Native Container SCON
0

20

40

60

80

Pr
oc

es
sin

g
tim

e
(u

s)

sys_write()
tcp_sendmsg()
ip_queue_xmit()
dev_queue_xmit()
veth_xmit()
br_handle_frame()
ip_rcv()
dev_queue_xmit()

Fig. 13. [Micro-benchmark] Processing time per packet and function symbol.

B. Micro-benchmarks

1) CPU usage: We generate TCP traffic using iperf [41]
and measure CPU usage (%) using mpstat. Each bar of Fig.
11a shows the average CPU cycles for SoftIRQ processing
(y-axis) per message size (x-axis).

For CPU usage, we focus on the SoftIRQ part because it cor-
responds to the packet processing overhead that SCON aims
to improve. As stated in §III, all experiments are conducted
on one CPU core, which is fully utilized in all cases (100%).
By subtracting the SoftIRQ usage presented in Fig. 11a from
the total CPU usage of 100% (one core), we obtain the CPU
usage mainly utilized by the User, i.e., the IoT application.
Thus, minimizing SoftIRQ usage is desirable as it frees up
more CPU cycles for IoT applications.

Fig. 11a shows the CPU usage for SoftIRQ increases as the
message size increases for all cases. This is because as the
message size increases, the number of messages generated at
the user level and the number of system calls processed at
the system levels decrease. Fig. 11a also shows that SCON
reduces the CPU cycle spent in SoftIRQ by 19% on average
compared to the container. In particular, the maximum CPU
usage reduction is 26% at 64 B messages.

2) Network throughput: We measure the network through-
put (Mbps) and depict the results in Fig. 11b. On average,
SCON demonstrates 20% higher network throughput com-
pared to the container. When comparing the throughput against
the native process, the container shows 40% lower throughput
on average, while SCON shows 29% lower throughput than
the native. Thus, SCON reduces the throughput difference by
28% compared to the container. For 512 B messages, SCON
improves throughput by ∼45% and reduces the throughput
difference with the native process by ∼47%.

These results show that SCON effectively reduces CPU
usage and improves container networking throughput when
processing highly frequent messages.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

3) Per packet latency: We measure the per packet latency
using Netperf [47] by changing the message sizes from 32 B
to 1 KB. Fig. 12a and Fig. 12b show the average and 99%
tail latency for sending a message using TCP from the IoT
client to the Linux edge server for 10 s, respectively. SCON
reduces the average latency by 25% on average compared to
the container and declines the gap between the native and
containers by 49% on average. For 99% tail latency, SCON
reduces 32% of container latency on average and minimizes
the gap between native processes and containers by 66% on
average.

4) Processing time per function symbol: Here, we further
investigate the impact of SCON by conducting the same
profiling shown in §IV. We measure the time it takes to process
each function in the networking stack of containers in IoT
when sending messages of size 64 B. Fig. 13 illustrates the
per packet execution time on average in native, container, and
SCON. Each bar consists of the functions we profiled, such
as ip_rcv, br_handle_frame, and veth_xmit.

SCON reduces the total time to process a single message
by 43% compared to the container. While the CPU usage of
container increases 99% than native, the difference between
SCON and native is 20%, which is 5× improvement. More
specifically, SCON saves 22 µs spent in ip_rcv, keeping
the time spent in other symbols similar to the container. This
indicates that SCON express forward successfully reduces
the overhead caused by additional and repetitious packet
processing in the existing container networking stack.

5) Flow completion time: We measure FCT, which is the
time required to complete a flow of IoT packets. We generate
IoT traffic on Raspberry Pi by traffic generator [65]. The traffic
generator requires a flow size distribution that characterizes a
packet trace by 1) message size and 2) frequency. The message
size refers to the size of data (payloads) that a single flow
delivers, and the frequency indicates how often each message
size appears in the trace, calculated as the number of flows
of that size divided by the total number of flows. We use
the flow size distribution of IoT sensor devices [66], such as
LiFX lightbulbs, Belkin Motion sensors, and Amazon Echo
devices, where each flow sends 100 to 1400 bytes of data.
In each trial, the traffic generator sends 100 IoT traffic flows
to an Intel server acting as an edge cloud server. Once the
traffic generator finishes sending a flow, we measure the time
to complete the flow (FCT). From the 100 FCTs, we calculate
the 99% tail value. We conduct the measurements at least five
times and present the average.

The measurement results are shown in Fig. 14. When
comparing SCON and container, SCON reduces the 99% tail
FCT by 20%. Furthermore, SCON decreases the gap between
the native and container from 12 ms to 2.9 ms, which means
4.1× small.

6) SCON on UDP: In the IoT domain, UDP is also em-
ployed as a lightweight protocol to facilitate low-power com-
munication (e.g., Constrained application protocol (CoAP))
[67]. Because SCON is an optimization technique on the
IP layer, SCON is compatible with UDP without any mod-
ifications. Here, we measure the CPU usage and network

Native Container SCON0

10

20

30

40

La
te

nc
y

(m
s)

Fig. 14. [Micro-benchmark] 99% tail FCT of IoT traffic.

32 64 128 256 512 1K0

20

40

60

80

100

Message size (B)

CP
U

us
ag

e
(%

) ContainerNative SCON

(a) CPU usage.

32 64 128 256 512 1K0

100

200

300

400

500

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) Native Container

SCON

(b) Network throughput.

Fig. 15. [Micro-benchmark] CPU usage for SoftIRQ and network throughput
in UDP.

throughput with similar settings to those described in the TCP
evaluation, but generating UDP traffic from iperf.

We first explain the CPU usage for SoftIRQ results in Fig.
15a. As the message size (x-axis) increases, SCON reduces
the CPU cycles spent in SoftIRQ by an average of 33%.
Also, when the message size is increased from 32 B to 1 KB,
the container experiences only 1.7% increases in CPU cycle
consumption, which can be considered negligible.

Next, Fig. 15b shows the network throughput of UDP.
SCON demonstrates 31% higher throughput on average com-
pared to the container. Also, SCON narrows the throughput
gap between the native and the container processes by an
average of 36%.

These results reveal that SCON effectively improves both
CPU usage and throughput for UDP traffic as well as TCP
traffic.

7) Scalability of SCON: Considering that multiple con-
tainers run simultaneously [68], [69], we measure SCON’s
network throughput as the number of containers on a device
increases. Since the IoT device in our experiments has four
CPU cores, we increase the number of containers from one
to four by pinning one core per container using cgroups
[70]. Similar to the experiments in §VI-B, we run iperf on
the containers and send messages to the edge cloud server
machine.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

200
400
600
800

1000

Number of containersTh
ro

ug
hp

ut
 (M

B/
s) 32 64 128 256 512 1K

Fig. 16. Network throughput of SCON with increasing number of containers.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Native throughput Container throughput SCON throughput Native CPU Container CPU SCON CPU

32 64 128 256 512 1K0

200

400

600

800

1000

0

10

20

30

40

50

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) C

PU
 usage (%

)

(a) ASUS PN42

32 64 128 256 512 1K0

20

40

60

80

0

20

40

60

80

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) C

PU
 usage (%

)

(b) Raspberry Pi 3B+

32 64 128 256 512 1K0

10

20

30

40

0

10

20

30

40

Message size (B)

Th
ro

ug
hp

ut
 (M

bp
s) C

PU
 usage (%

)

(c) Wireless networking (Raspberry Pi 4)

Fig. 17. Network throughput and CPU usage for SoftIRQ for other devices and wireless networking.

TABLE I
SPECIFICATION OF THE DEVICES.

Specification ASUS PN42 [71] Raspberry Pi 3 Model B+ [72]

Hardware
CPU quad-core Intel N100

@ 3.4 GHz
quad-core ARM Cortex-A53

@ 1.4 GHz
Storage 128 GB 128 GB

NIC 1000 Mbps 300 Mbps
Software OS Ubuntu: 20.04, Linux: 5.10 Ubuntu: 20.04, Linux: 5.10

Fig. 16 shows the measurement results. For different mes-
sage sizes ranging from 32 B to 1 KB, we measure the
networking throughput as the number of containers increases
from one to four. Each bar represents the sum of the individual
container’s throughput, so the bar for three containers is the
sum of the throughput of three containers. For all message
sizes, the networking throughput scales linearly with the
number of containers. When the number of containers in-
creases from one to four, the throughput across message sizes
increases by an average of 4.2×. These results demonstrate
that SCON is scalable with the number of containers.

C. Interoperability on Other Devices and Wireless Networking

1) Different IoT devices: In addition to the experiments
with the Raspberry Pi 4 up to this section, we also evaluate
SCON with different types of devices. Table I summarizes
the specifications of the two devices. First, the ASUS PN42
is chosen because it has much faster (2.3× faster in clock
speed) CPU cores and different architecture (Intel) compared
to the Raspberry Pi 4, which has ARM cores. Second, we
choose the Raspberry Pi 3B+ as it has similar ARM cores to
the Raspberry Pi 4, but with 70% lower network bandwidth
capacity and 7% slower clock speeds. Except for the IoT
devices, the other setup remains the same as in §VI-B.

ASUS PN42. Fig. 17a shows the network throughput (bars,
left y-axis) and CPU usage for SoftIRQ processing (lines,
right y-axis) on the ASUS PN42 device. As the message size
increases, SCON demonstrates ∼17% better throughput (in 64
B) and ∼25% reduced SoftIRQ CPU usage (128 B) compared
to the container. On average, these improvements are 7% and
17%, respectively, compared to the container. Also, the native
and SCON saturate the network capacity of 1000 Mbps with
message sizes starting from 128 B, and the container does
so from 256 B. In the experiment with the Raspberry Pi 4,
the throughput does not saturate up to 1000 Mbps (shown in
Fig. 11b). This is because the ASUS PN42 device has faster

CPU cores than the Raspberry Pi 4, which accelerates packet
processing and saturates the entire network capacity.

Raspberry Pi 3B+. Fig. 17b shows the results on the
Rasberry Pi 3B+. SCON increases network throughput by 20%
on average and reduces the CPU cycle spent in SoftIRQ by
10% on average compared to the container. Also, we observe
that the throughput of Raspberry Pi 3B+ does not saturate
its network capacity (300 Mbps) in contrast to the results of
ASUS PN42 (in Fig. 17a). This is because the Raspberry Pi
3B+ has low-speed CPU cores, requiring more time to process
each message.

In summary, for both different devices, SCON improves
CPU usage and throughput compared to the container.

2) Wireless network setting: We now evaluate SCON in
a wireless network setting. To eliminate interference from
the devices, we set up a WiFi router with 802.11ax LAN to
connect the Intel server and a Raspberry Pi 4. We also evaluate
other devices, such as ASUS PN42 and Raspberry Pi 3+. Since
they show similar tendencies to the Raspberry Pi 4, we omit
their detailed results.

Fig. 17c shows the network throughput and SoftIRQ CPU
usage, which is similar to Figs. 17a and 17b. We first explain
the results of CPU usage (lines). In a wireless networking
setting, SCON effectively reduces SoftIRQ CPU usage by an
average of 28% compared to the container. Also, regardless of
the message sizes, all results remain under 11% of SoftIRQ
CPU usage. This is because the WiFi provides low networking
bandwidth (30 Mbps at maximum), so the networking capacity
becomes a bottleneck before CPU resources.

Second, for the network throughput (bars of Fig. 17c),
SCON improves network throughput by an average of 10%
than the container. In addition, we observe that, from 128 B,
the throughput of SCON does not vary significantly (∼5%)
over message sizes. This is because, starting from 128 B
messages, the WiFi bandwidth becomes saturated quickly,
so no significant throughput difference exists. In summary,
even in wireless networking, SCON enhances networking
throughput while consuming less CPU.

VII. RELATED WORK

We summarize the related studies in Table II and compare
them with this study in terms of interoperability.

First, many studies have been built on the concept of by-
passing kernel processing, either partially or entirely, through

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE II
RELATED WORK COMPARISON.

Bypass kernel
(or in-part)

Additional hardware
for IoT devices

Modification of
kernel semantics

Application
modification required

DPDK [22] O (Host) O X O
Freeflow [20] O (Host) O O X
Falcon [23] O (Host) O X X
Socket-grafting [19] O (Container) X O O
Slim [21] O (Container) X O △
SCON (this study) X X X X

hardware or by shifting the processing to the user space.
One example is Intel DPDK [22] that bypasses the kernel
networking stack and delivers packets directly to the user
space, facilitating high throughput and low latency for packet
processing. However, it is quite well-known that its use is
limited to NICs that support DPDK functionalities and APIs
and that user applications need to be modified to use DPDK
APIs to communicate with NICs. Furthermore, DPDK also
requires pre-allocated large memory to handle heavy traffic,
making it questionable for IoT devices with limited memory
size.

Also, FreeFlow [20] bypasses host parts of the kernel net-
working by leveraging additional hardware (i.e., RDMA [50])
and shared memory between containers. Although FreeFlow
showed great performance compared to the existing overlay
networking, it requires NICs that support RDMA. To our
knowledge, it is not clear when such NIC is available in IoT
devices. Even when such NIC becomes available, because
the containers share memory space to improve throughput,
FreeFlow brings the security issue that may compromise
isolation between containers. So, although FreeFlow has ad-
vantages over native container networking, it may not have
“interoperability” for heterogeneous IoT devices that lack the
hardware support for RDMA.

FALCON [23] addresses the issue of a bottleneck in
container networking caused by SoftIRQ processing. They
proposed a pipelined processing of a SoftIRQ using separate
cores, resulting in improved network throughput. However,
it should be noted that FALCON achieved this performance
improvement by utilizing additional CPU cores. Since CPU
cores are typically limited in IoT devices, FALCON may not
be suitable for IoT environments and is more appropriate
for resource-rich datacenters. Moreover, FALCON requires
Mellanox ConnectX-5 NICs with advanced offload features,
which are not supported by most IoT hardware.

Socket-grafting [19] proposed a new socket layer protocol
called AF GRAFT that bypasses the container networking
stack by connecting the container and host socket layer. How-
ever, utilizing AF GRAFT requires modification of the socket
APIs of all legacy applications. This means that considerable
development efforts are necessary to apply AF GRAFT to
various heterogeneous IoT applications.

Lastly, Slim [21] improved the network throughput by by-
passing the container networking stack and using the host net-
working stack directly without any NAT or overlay. However,
since most packets in Slim contain only host IP addresses,

the host kernel cannot distinguish between packets originating
from the host or containers. This makes network diagnosis
challenging. In addition, Slim implemented custom APIs to
reroute system calls to its framework for interoperability.
However, legacy applications are still incompatible due to
semantic differences in packet processing. Specifically, Slim
lacks the complete support for the accept call, which is
necessary for the MQTT library in IoT applications, resulting
in segmentation faults.

In contrast, SCON improves CPU efficiency, network throu-
ghput, and latency for small IoT packets without changing
any system calls or requiring additional hardware features.
Consequently, SCON keeps the interoperability with legacy
IoT devices and applications.

VIII. DISCUSSION AND FUTURE WORK

Scope of this study. In this paper, we focus on IoT devices
that can run a standalone Linux kernel. Our evaluation is based
on 1) micro-benchmarks that try to saturate the link (stress
test) and 2) IoT application protocols with a range of message
transmission intervals in order to cover the sporadic pattern
as well as bursty one. For future work, we will characterize
the details of IoT traffic patterns and evaluate SCON with the
patterns.

Portability of SCON. The current version of SCON is
implemented in the kernel. One might be curious about its
portability. In the future, we plan to explore the option of re-
implementing SCON using loadable modules to enhance its
portability.

Timer interval and overhead of SCON flusher. SCON
flushes the Conentry if it is not referenced within a specific
timer interval (e.g., 10 s). First, to decide a reasonable timer
interval, we investigate other papers that deal with IoT traffic
characteristics [5], [66], [73], [74]. However, we observe that,
to our knowledge, no study presents a specific duration that
can determine the idleness or termination of IoT traffic. Thus,
we determine the value empirically for our experiments. In the
future, we plan to test various flush intervals by collecting IoT
traffic traces from real-world IoT sensors (e.g., smart bulbs and
smart cameras). Second, to identify the overhead of the SCON
flusher, we measure the time taken to reallocate Conentry for
newly-arrived packets after the Conentry is flushed. The time
taken is 0.03 ms on average, and this delay can be hidden by
pre-allocating Conentry structures in advance. We leave this
optimization as future work.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

SCON in changing communication environments. The
communication environment can change over time, for exam-
ple, from less congested to more congested. Then, congestion
control or reliable delivery of transport protocols might kick
in. However, SCON express forward can still work due to the
following reasons. First, SCON express forward remembers
only the decisions that occur in the IP and bridge layers, such
as the addresses of the container and cloud server, the interface
to deliver the packet, etc. Since changes in the environment,
like network congestion, are dealt with in the upper layer
(e.g., transport layer), SCON is not affected. Second, the
addresses of the container and cloud server remain consistent
over their connection regardless of environmental changes, so
the Contable remains valid.

Comparison with existing studies. We investigate other
existing methods as much as possible, as listed in Table 1.
However, we find that they cannot be evaluated directly with
SCON due to the following reasons. First, several studies [22],
[20] require additional new hardware features (e.g., DPDK)
that are not available on IoT devices, which makes them
unsuitable for IoT device networking. Similarly, one study [23]
relies on Mellanox ConnectX-5 NICs with advanced offload
features, which most IoT hardware does not support. So, it
is not feasible to make a direct comparison with SCON.
Second, several studies [19], [21] require API changes for all
legacy IoT applications. For example, Slim [21] implements
its custom APIs to reroute system calls, and Socket-grafting
[19] entirely replaces the socket layer and its APIs, making
them not interoperable with the existing IoT applications. In
our efforts for fair comparisons, we try to port Slim to run
IoT applications but fail, in particular for the MQTT protocol
(Mosquitto broker). The reason is Slim modifies the semantics
of the accept system call so that it does not work with
applications that assume the semantics. In short, although we
try to compare SCON with other existing studies, they assume
either special hardware support or their own API/semantics.
A key design goal of SCON is to make it interoperable with
the existing IoT applications yet to accelerate the networking
performance of IoT devices.

Consideration on overlay. The current design of SCON
is built with the default container networking on NAT that
is the de-facto option for IoT devices [11]. However, one
may wonder about the feasibility of using overlay techniques,
which are commonly utilized in cloud datacenters. Overlays
are rarely used in IoT due to their heavy overhead, so this
study does not focus on them. However, given that various
cloud orchestration platforms, such as OpenStack, maintain
network connections through overlays, it might be useful to
use overlays in IoT to further enable compatibility between
IoT devices and cloud networks. So, we leave improving
overlay overheads in resource-constrained IoT devices as the
future work.

Extension to secure containers. The SCON design aims to
enhance networking performance while minimizing resource
consumption. However, it is well-known that containers are
less isolated compared to other virtualization technologies,
like virtual machines [75], [76]. Numerous studies have been
conducted to improve the security of containers in common

cloud datacenters [77], [76], [78]. However, to the best of our
knowledge, little research has addressed both performance and
security issues in IoT devices. In the future, we plan to extend
SCON to incorporate both performance and security.

IX. CONCLUSION

This study presents SCON, a high-performance container
networking accelerator for resource-restricted IoT devices. We
identify the overheads in container networking of IoT devices.
SCON intelligently memorizes decisions on packet processing
without hardware dependency. Also, SCON maintains the
native kernel and socket semantics, eliminating the need for
re-compilation or re-verification of legacy applications.

We implement SCON on a recent version of the Linux
kernel, and the evaluation results reveal that SCON effectively
reduces CPU usage for networking processing (SoftIRQ) by
26% and improves network throughput by 18% for TCP
packets. For UDP packets, SCON also reduces CPU usage
for Softirq by 33% and improves network throughput by
32%. Moreover, SCON significantly reduces the latency of
real-world applications like HTTP and MQTT, with ∼10×
improvement compared to containers, reaching a level similar
to the native process.

APPENDIX

Here, we explain a detailed background to help understand
this study.

A. Container Virtualization

Virtualization creates multiple VM instances to run user
applications on a single physical machine. While sharing the
underlying hardware resources, such as CPU, memory, and
storage, virtualization provides isolation between the multi-
ple instances to avoid interference between them. Container
virtualization has become widely used as it has much lower
overheads than virtual machines. Unlike virtual machines that
include the kernel in the virtualized instance, containers share
the host server’s kernel but isolate the application processes.
Since containers are created above the host server, they intro-
duce an additional routine to provide isolation. We explain the
sequence of packet processing toward the network interface to
deliver IoT traffic between containers.

B. Details in Packet Processing Sequence

We explain the necessary background on the packet pro-
cessing sequence in §II. Here, we provide more detailed
explanations.

1) Native Linux: In Linux, user applications create the data
(payload) to send, and the kernel crafts packets with the data
and handles network protocols. Fig. A.1a shows the packet
processing sequences for TCP packets of the native Linux.
Firstly, the packet from the user application passes through
sock_sendmsg, the first function of the transport layer of
the Linux networking stack. tcp_sendmsg then allocates
memory spaces for the data structures of the metadata and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

sock_sendmsg

tcp_sendmsg
tcp_write_xmit

tcp_transmit_skb

ip_queue_xmit
skb->dst->output

ip_output
ip_finish_output

dev_queue_xmit
ndo_start_xmit

TCP layer

IP layer

Link layer

(a) Native Linux.

sock_sendmsg

tcp_sendmsg
tcp_write_xmit

tcp_transmit_skb

ip_queue_xmit
skb->dst->output

ip_output
ip_finish_output

dev_queue_xmit
veth_xmit

dev_forward_skb
process_backlog
br_handle_frame
br_pass_frame_up
netif_receive_skb

dev_queue_xmit

ndo_start_xmit

ip_rcv
ip_forward
ip_output

Container

(b) Container.

Fig. A.1. Detailed packet processing sequence comparison. Containers have a longer sequence than native Linux.

payload of the packet (e.g., sk_buff) and establishes a
connection to the remote destination host.
tcp_write_xmit checks whether the packet needs to

be fragmented before transmission. tcp_transmit_skb
invokes ip_queue_xmit and ip_output for rout-
ing lookup and Netfilter processing. When the next-hop
MAC address is identified (via ip_finish_output and
ip_finish_output2), the packet is transferred to the link
layer (dev_queue_xmit) and further to the correspond-
ing network interface layer (ndo_start_xmit). Then, the
packet is transmitted by the actual network device, such as a
network interface card.

2) Container: Fig. A.1b summarizes how packets are pro-
cessed when containers are used. The functions in the TCP
and IP layers are the same as in native Linux. In the link
layer, however, ndo_start_xmit calls veth_xmit that
transmits packets to veth instead of the actual network device
of the host. veth is a virtual network interface assigned to
each container by default, which provides an isolated network
address space. Each veth has unique MAC and IP addresses
so the containers can be distinguished.

After passing through the veth, the packet is delivered to
the bridge that offers connectivity. The role of the bridge is
to identify the MAC address of the veth interfaces of the
containers to forward packets to appropriate containers. First,
the bridge performs an ARP (Address Resolution Protocol)
table lookup to identify the MAC address of the packet.
Next, the bridge passes packets to the Netfilter process
to determine which veth interface a packet goes out on
by br_handle_frame and br_pass_frame_up
functions. Finally, br_pass_frame_up calls
netif_receive_skb that leads to another IP processing.

After the operations from the bridge are finished,
netif_receive_skb triggers the second IP layer process-
ing to invoke ip_rcv, ip_forward, and ip_output.
This involves routing lookups that determine the proper des-
tination IP of packets and Netfilter operations that decide
whether to forward packets are performed. In particular,
NAT is conducted by the Netfilter hook, which is called
by ip_output in the IP layer to change the source IP
address of packets from the IP address of the container to
that of the host. The container networking has to perform

network address translation (NAT) because the IP address of
the containers is unique only within a host, so they cannot
be recognized on the external network. So, through NAT,
container networking makes the IP address translatable to
the external network. After NAT from the second IP layer,
the packet is delivered to the actual network interface of the
host server (dev_queue_xmit), and the packet is finally
transmitted (ndo_start_xmit).

REFERENCES

[1] H. Tran-Dang, N. Krommenacker, P. Charpentier, and D.-S. Kim,
“Toward the internet of things for physical internet: Perspectives and
challenges,” IEEE internet of things journal, vol. 7, no. 6, pp. 4711–
4736, 2020.

[2] T. Chakraborty, H. Shi, Z. Kapetanovic, B. Priyantha, D. Vasisht, B. Vu,
P. Pandit, P. Pillai, Y. Chabria, A. Nelson, M. Daum, and R. Chandra,
“Whisper: IoT in the TV white space spectrum,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 401–418.

[3] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“SwarmMap: Scaling up real-time collaborative visual SLAM at the
edge,” in 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), 2022, pp. 977–993.

[4] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial IoT data
scheduling based on hierarchical fog computing: A key for enabling
smart factory,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4590–4602, 2018.

[5] D. Yu, W. Li, H. Xu, and L. Zhang, “Low reliable and low latency
communications for mission critical distributed industrial internet of
things,” IEEE Communications Letters, vol. 25, no. 1, pp. 313–317,
2020.

[6] L. Hobert, A. Festag, I. Llatser, L. Altomare, F. Visintainer, and A. Ko-
vacs, “Enhancements of V2X communication in support of cooperative
autonomous driving,” IEEE communications magazine, vol. 53, no. 12,
pp. 64–70, 2015.

[7] I. Bedhief, L. Foschini, P. Bellavista, M. Kassar, and T. Aguili, “Toward
self-adaptive software defined fog networking architecture for IIoT and
industry 4.0,” in 2019 IEEE 24th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD). IEEE, 2019, pp. 1–5.

[8] Y. Yoo, Z. Niu, C. Yoo, P. Cheng, and Y. Xiong, “SegaNet: An advanced
IoT cloud gateway for performant and priority-oriented message deliv-
ery,” in Proceedings of the 7th Asia-Pacific Workshop on Networking,
2023, pp. 54–60.

[9] R. Morabito, “Virtualization on Internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, vol. 5,
pp. 8835–8850, 2017.

[10] W. A. Jabbar, C. W. Wei, N. A. A. M. Azmi, and N. A. Haironnazli, “An
IoT raspberry Pi-based parking management system for smart campus,”
Internet of Things, vol. 14, p. 100387, 2021.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[11] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast
container provisioning on the edge and over the WAN,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), 2022, pp. 35–50.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[13] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[14] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
edge: Orchestration of real-time vision applications on heterogeneous
edge clouds,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 1270–1278.

[15] S. Kumar, M. P. Andersen, H.-S. Kim, and D. E. Culler, “Performant
TCP for low-power wireless networks,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
911–932.

[16] D. Jung, Z. Zhang, and M. Winslett, “Vibration analysis for IoT enabled
predictive maintenance,” in 2017 ieee 33rd international conference on
data engineering (icde). IEEE, 2017, pp. 1271–1282.

[17] P. Bahl, A. Adya, J. Padhye, and A. Wolman, “Reconsidering wireless
systems with multiple radios,” ACM SIGCOMM Computer Communi-
cation Review, vol. 34, no. 5, pp. 39–46, 2004.

[18] G. Chen, Y. Wang, H. Li, and W. Dong, “TinyNET: a lightweight,
modular, and unified network architecture for the internet of things,”
in Proceedings of the ACM SIGCOMM 2019 conference posters and
demos, 2019, pp. 9–11.

[19] R. Nakamura, Y. Sekiya, and H. Tazaki, “Grafting sockets for fast
container networking,” in Proceedings of the 2018 Symposium on
Architectures for Networking and Communications Systems, 2018, pp.
15–27.

[20] D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan, “FreeFlow: Software-based virtual rdma net-
working for containerized clouds.” in NSDI, 2019, pp. 113–126.

[21] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson, “Slim: OS kernel support for a low-overhead container
overlay network,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), 2019, pp. 331–344.

[22] “DPDK (data plane development kit.” https://www.dpdk.org/, [Accessed:
Mar. 05. 2023.].

[23] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet
processing in container overlay networks,” EuroSys 2021, 2021.

[24] “DPDK - supported hardware.” https://core.dpdk.org/supported/, [Ac-
cessed: Mar. 05. 2023.].

[25] W. Svensson, “An evaluation of how edge computing is enabling the
opportunities for industry 4.0,” 2020.

[26] M. Wallschläger, A. Gulenko, F. Schmidt, A. Acker, and O. Kao,
“Anomaly detection for black box services in edge clouds using packet
size distribution,” in 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet). IEEE, 2018, pp. 1–6.

[27] “Raspberry Pi for industry,” https://www.raspberrypi.com/for-industry,
[Accessed: Feb. 23. 2023.].

[28] T. Gizinski and X. Cao, “Design, implementation and performance
of an edge computing prototype using Raspberry Pis,” in 2022 IEEE
12th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 2022, pp. 0592–0601.

[29] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 189–197.

[30] A. W. Services, “Explore AWS IoT core services in hands-on tutorial,”
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.
html, [Accessed: Mar. 17. 2023.].

[31] Microsoft, “Azure IoT edge documentation,” https://docs.microsoft.com/
azure/iot-edge, [Accessed: Oct. 17. 2023.].

[32] C. Devnet, “Cisco edge device manager - application manage-
ment,” https://developer.cisco.com/docs/iotod/application-management,
[Accessed: Oct. 23. 2023.].

[33] D. docs, “Docker - networking overview,” https://docs.docker.com/
network, [Accessed: Nov. 1. 2023.].

[34] C. LXD, “Run system containers with LXD,” https://ubuntu.com/lxd,
[Accessed: Nov. 1. 2023.].

[35] openVZ, “Open source container-based virtualization for Linux,” https:
//openvz.org, [Accessed: Nov. 1. 2023.].

[36] L. foundation, “Open vSwitch - production quality, multilayer open vir-
tual switch,” https://www.openvswitch.org, [Accessed: Feb. 13. 2023.].

[37] AWS, “What is MQTT?” https://aws.amazon.com/what-is/mqtt/?nc1=h
ls, [Accessed: Nov. 11. 2023.].

[38] IBM, “MQTT messaging,” https://www.ibm.com/docs/en/
maximo-monitor/continuous-delivery?topic=concepts-mqtt-messaging,
[Accessed: Sep. 2. 2023.].

[39] Microsoft, “Communicate with an IoT hub using the MQTT protocol,”
https://learn.microsoft.com/en-us/azure/iot/iot-mqtt-connect-to-iot-hub,
[Accessed: Jun. 27. 2023.].

[40] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi,
and C. Stewart, “A survey on edge performance benchmarking,” ACM
Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–33, 2021.

[41] “iPerf - the ultimate speed test tool for TCP, UDP and SCTP,” https:
//iperf.fr/, [Accessed: Feb. 23. 2023.].

[42] H.-W. Cho and K. G. Shin, “BlueFi: Bluetooth over WiFi,” in Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 475–487.

[43] A. Balasingam, K. Gopalakrishnan, R. Mittal, V. Arun, A. Saeed,
M. Alizadeh, H. Balakrishnan, and H. Balakrishnan, “Throughput-
fairness tradeoffs in mobility platforms,” in Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and
Services, 2021, pp. 363–375.

[44] T. Lu, W. Xia, X. Zou, and Q. Xia, “Adaptively compressing IoT data
on the resource-constrained edge,” in 3rd USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 20), 2020.

[45] A. J. Pinheiro, J. d. M. Bezerra, C. A. Burgardt, and D. R. Campelo,
“Identifying IoT devices and events based on packet length from
encrypted traffic,” Computer Communications, vol. 144, pp. 8–17, 2019.

[46] “mpstat,” https://www.intel.com/content/www/us/en/robotics/
real-time-systems.html, [Accessed: May. 16. 2023.].

[47] “Netperf,” https://github.com/HewlettPackard/netperf, [Accessed: Mar.
05. 2023.].

[48] Intel, “Real-time systems overview and examples,” https://man7.org/
linux/man-pages/man1/mpstat.1.html, [Accessed: Jul. 12. 2024.].

[49] M. Fletcher, E. Paulz, D. Ridge, and A. J. Michaels, “Low-latency
wireless network extension for industrial Internet of things,” Sensors,
vol. 24, no. 7, p. 2113, 2024.

[50] mellanox, “Rdma aware networks programming user manual,”
https://indico.cern.ch/event/218156/attachments/351725/490089/
RDMA Aware Programming user manual.pdf, [Accessed: Mar.
05. 2023.].

[51] “Debugging the kernel using Ftrace - part 1,” https://lwn.net/Articles/
365835/, [Accessed: Jan. 07. 2023.].

[52] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi, “Scalable
kernel TCP design and implementation for short-lived connections,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 2, pp. 339–
352, 2016.

[53] S. A. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan, “The
emerging landscape of edge computing,” GetMobile: Mobile Computing
and Communications, vol. 23, no. 4, pp. 11–20, 2020.

[54] L. Belli, “Big stream cloud architecture for the Internet of things,” in
Proceedings of the 2015 on MobiSys PhD Forum, 2015, pp. 5–6.

[55] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab:
measuring wireless networks and smartphone users in the field,” ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 3, pp. 15–
20, 2011.

[56] “Nginx,” https://www.nginx.com, [Accessed: Mar. 05. 2023.].
[57] “wrk2 - a HTTP benchmarking tool based mostly on wrk,” https://github.

com/giltene/wrk2, [Accessed: Mar. 05. 2023.].
[58] F. Tusa and S. Clayman, “The impact of encoding and transport for

massive real-time iot data on edge resource consumption,” Journal of
Grid Computing, vol. 19, no. 3, p. 32, 2021.

[59] K. Waehner, “Apache kafka and mqtt – smart city
and 5g,” https://www.kai-waehner.de/blog/2021/03/29/
apache-kafka-mqtt-part-5-of-5-smart-city-government-citizen-telco-5g,
[Accessed: Mar. 18. 2023.].

[60] C. Gündoğan, P. Kietzmann, M. S. Lenders, H. Petersen, M. Frey,
T. C. Schmidt, F. Shzu-Juraschek, and M. Wählisch, “The impact of
networking protocols on massive m2m communication in the industrial
iot,” IEEE Transactions on Network and Service Management, vol. 18,
no. 4, pp. 4814–4828, 2021.

[61] “MQTT: The standard for IoT messaging,” https://mqtt.org/, [Accessed:
Mar. 05. 2023.].

[62] “MQTT version 5.0,” https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html, [Accessed: Jul. 16. 2024.].

[63] E. Foundation, “Eclipse Mosquitto - an open source MQTT broker,”
https://mosquitto.org/, [Accessed: Mar. 05. 2023.].

[64] “MQTTLoader,” https://github.com/dist-sys/mqttloader, [Accessed: Mar.
05. 2023.].

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://www.dpdk.org/
https://core.dpdk.org/supported/
https://www.raspberrypi.com/for-industry
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs-first-thing.html
 https://docs.microsoft.com/azure/iot-edge
 https://docs.microsoft.com/azure/iot-edge
https://developer.cisco.com/docs/iotod/application-management
https://docs.docker.com/network
https://docs.docker.com/network
https://ubuntu.com/lxd
https://openvz.org
https://openvz.org
https://www.openvswitch.org
https://aws.amazon.com/what-is/mqtt/?nc1=h_ls
https://aws.amazon.com/what-is/mqtt/?nc1=h_ls
https://www.ibm.com/docs/en/maximo-monitor/continuous-delivery?topic=concepts-mqtt-messaging
https://www.ibm.com/docs/en/maximo-monitor/continuous-delivery?topic=concepts-mqtt-messaging
https://learn.microsoft.com/en-us/azure/iot/iot-mqtt-connect-to-iot-hub
https://iperf.fr/
https://iperf.fr/
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html
https://github.com/HewlettPackard/netperf
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://man7.org/linux/man-pages/man1/mpstat.1.html
https://indico.cern.ch/event/218156/attachments/351725/490089/RDMA_Aware_Programming_user_manual.pdf
https://indico.cern.ch/event/218156/attachments/351725/490089/RDMA_Aware_Programming_user_manual.pdf
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://www.nginx.com
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://www.kai-waehner.de/blog/2021/03/29/apache-kafka-mqtt-part-5-of-5-smart-city-government-citizen-telco-5g
https://www.kai-waehner.de/blog/2021/03/29/apache-kafka-mqtt-part-5-of-5-smart-city-government-citizen-telco-5g
https://mqtt.org/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://mosquitto.org/
https://github.com/dist-sys/mqttloader

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[65] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-
service multi-queue data centers,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA: USENIX Association, Mar. 2016, pp. 537–549. [Online].
Available: https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/bai

[66] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying IoT devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[67] W. Dong, B. Li, H. Li, H. Wu, K. Gong, W. Zhang, and Y. Gao, “Lin-
kLab 2.0: A multi-tenant programmable IoT testbed for experimentation
with edge-cloud integration,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), 2023, pp. 1683–1699.

[68] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating performance
of containerized IoT services for clustered devices at the network edge,”
IEEE Internet of Things Journal, vol. 4, no. 4, pp. 1019–1030, 2017.

[69] “What is Azure IoT Edge,” https://learn.microsoft.com/en-us/azure/
iot-edge/about-iot-edge?view=iotedge-1.5, [Accessed: Jul. 16. 2024.].

[70] “cgroups - Linux control groups,” https://man7.org/linux/man-pages/
man7/cgroups.7.html, [Accessed: Jun. 12. 2024.].

[71] “Asus PN42,” https://www.asus.com, [Accessed: Jun. 22. 2024.].
[72] “Raspberry Pi,” https://www.raspberrypi.org, [Accessed: Jun. 22. 2024.].
[73] H. Nguyen-An, T. Silverston, T. Yamazaki, and T. Miyoshi, “Generating

iot traffic: A case study on anomaly detection,” in 2020 IEEE Interna-
tional Symposium on Local and Metropolitan Area Networks (LANMAN.
IEEE, 2020, pp. 1–6.

[74] ——, “Iot traffic: Modeling and measurement experiments,” IoT, vol. 2,
no. 1, pp. 140–162, 2021.

[75] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE access, vol. 7, pp. 52 976–52 996,
2019.

[76] A. Randazzo and I. Tinnirello, “Kata containers: An emerging architec-
ture for enabling MEC services in fast and secure way,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management
and Security (IOTSMS). IEEE, 2019, pp. 209–214.

[77] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications.” in NSDI, vol. 20, 2020, pp. 419–434.

[78] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The true cost of containing: A gVisor case study.” in
HotCloud, 2019.

Wonmi Choi received the B.S. degree in Computer
Science from Korea University, Seoul, Republic of
Korea, in 2021. She is currently pursuing her Ph.D.
degree with Korea University, Seoul, Republic of
Korea. Her research interests include container vir-
tualization, container orchestration and kernel net-
working stack.

Yeonho Yoo [M] received his B.S. degree in com-
puter science from Kookmin University, Seoul, Re-
public of Korea, in 2017, and his M.S. and Ph.D.
degrees in computer science from Korea University,
Seoul, Republic of Korea, in 2021 and 2024, respec-
tively. He worked as a research intern at Microsoft
Research Asia in 2023. He is currently a postdoctoral
researcher at Korea University. His current research
interests include network virtualization, SDN, data-
center systems, and AI systems.

Kyungwoon Lee received the B.E. degree from
the School of Electronics Engineering, Kyungpook
National University, Daegu, South Korea, and the
M.S. and Ph.D. degrees in computer science from
Korea University, Seoul, South Korea. From 2020
to 2022, she was with the Department of Computer
science and Engineering as a research professor. She
is currently working as an assistant professor in
the School of Electronics Engineering, Kyungpook
National University. Her research interests include
resource scheduling in cloud computing, container

and server virtualization, and TCP/IP kernel networking stack.

Zhixiong Niu is a Senior Researcher at Microsoft
Research Asia. He received his Ph.D. from Depart-
ment of Computer Science, City University of Hong
Kong in 2019. Before that, he received his B.E. in
Network Engineering at Dalian Maritime University
(DMU) in 2012 and M.Sc. in Computer Science at
the University of Hong Kong (HKU) in 2014. His
research is primarily concentrated on systems and
networking.

Peng Cheng received the Ph.D. degree in computer
science and technology from Tsinghua University in
2015 and B.S. degrees in Software Engineering from
Beihang University in 2010. He was a visiting Ph.D.
student at UCLA from 2013 to 2014. He is a Senior
Principal Research Manager at Microsoft Research
Asia. His research interests are in the broad areas of
systems and networking.

Yongqiang Xiong received the B.S, M.S. and Ph.D.
degrees from Tsinghua University, Beijing, China,
in 1996, 1998 and 2001, respectively, all in com-
puter science. He is currently a Senior Principal
Researcher and Research Manager with Microsoft
Research Asia and leads the Networking Infrastruc-
ture Group. His research interests include system and
networking, as well as network security.

Gyeongsik Yang [M] received his B.S., M.S., and
Ph.D. degrees in computer science from Korea Uni-
versity, Seoul, Republic of Korea, in 2015, 2017, and
2019, respectively. He worked as a research intern at
Microsoft Research Asia and as a research professor
at Korea University. He is currently an assistant
professor in the Department of Computer Science
and Engineering at Korea University. His research
interests include operating systems, AI systems, dat-
acenter systems, network virtualization, and SDN.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/bai
https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge?view=iotedge-1.5
https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge?view=iotedge-1.5
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.asus.com
https://www.raspberrypi.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Chuck Yoo [M] received the B.S. and M.S. de-
grees in electronic engineering from Seoul National
University, and M.S. and Ph.D. degrees in computer
science from the University of Michigan, Ann Arbor.
He worked as a researcher at Sun Microsystems.
Since 1995, he has been at the College of Informatics
at Korea University, where he is currently a pro-
fessor. His research interests include server/network
virtualization and operating systems.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3453410

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background
	Container Networking in IoT Devices
	Packet Processing Sequence

	Motivation
	Root Cause Analysis and Our Approach
	SCON Design
	SCON Path
	SCON Components
	Contable
	Confilter flag
	SCON composer
	SCON flusher

	Implementation and Evaluation
	Real-world Application Protocols
	HTTP
	MQTT
	Transmission intervals on MQTT

	Micro-benchmarks
	CPU usage
	Network throughput
	Per packet latency
	Processing time per function symbol
	Flow completion time
	SCON on UDP
	Scalability of SCON

	Interoperability on Other Devices and Wireless Networking
	Different IoT devices
	Wireless network setting

	Related Work
	Discussion and Future Work
	Conclusion
	Appendix
	Container Virtualization
	Details in Packet Processing Sequence
	Native Linux
	Container

	References
	Biographies
	Wonmi Choi
	Yeonho Yoo [M]
	Kyungwoon Lee
	Zhixiong Niu
	Peng Cheng
	Yongqiang Xiong
	Gyeongsik Yang [M]
	Chuck Yoo [M]

