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Abstract
Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately

for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a “black-box,” leading to
uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both
vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and
throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of ∼1.9%, which is highly accurate and
an be applied in the real-world.
2024 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open

ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, blockchain technology has gained attention in
both industry and academia due to its various advantages,
such as data integrity, security, and auditability [1]. At present,
public cloud providers such as Google Cloud [2] and AWS [3]
have released managed blockchain services, called BaaS
(blockchain-as-a-service), and numerous blockchain networks
(or nodes) are deployed in public clouds using BaaS.

Utilizing BaaS to support a permissioned blockchain needs
to consider the performance of the entire network. Specifically,
it is still not clear how to configure the number of blockchain
nodes (e.g., peers and orderers) that constitute a blockchain
network (horizontal scaling) and the computing resources,
such as CPU, for these nodes (vertical scaling). It is well
known that these horizontal and vertical scaling factors signifi-
cantly affect the performance and reliability of the blockchain
network [4], such as the number of data transactions stored
(committed) in the blockchain per second (transactions per
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second, TPS) and the number of failed transactions (transac-
tion success rate). Thus, configuring BaaS is often treated as
blackbox problem [5].

Several studies observed this problem and attempted to
analyze the performance of BaaS. Yang et al. [1] analyzed
the BaaS performance across various consensus protocols.
Thakkar et al. [4] benchmarked the performance of vertical
and horizontal scaling on the scalability of Hyperledger Fabric
(HLF). However, although these studies provided an analysis
of BaaS configurations, they failed to predict the performance
of new BaaS systems. This gap means that the scaling con-
figuration process is still ambiguous and a blackbox problem.
Another study by Sukhwani et al. [6] used stochastic reward
nets to theoretically model the performance of HLF v1.0+.
However, their model’s use in BaaS configuration is limited.
As a theoretical model, modeling requires a deep understand-
ing of the stochastic reward net and internal processes of HLF
is required. Thus, the adaptability and flexibility of the model
are poor, and the predictions on new and unseen blockchain
networks are quite restricted.

To overcome the limitations of previous studies, we intro-
duce new machine learning (ML)-based prediction models to
estimate the performance of permissioned blockchains based
on scaling factors. To the best of our knowledge, this is the
first approach that leverages ML to consider scaling configu-
blockchain performance for resource scaling configurations, ICT Express (2024),

rations in permissioned blockchains, thereby facilitating easier
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Fig. 1. HLF components.

Fig. 2. HLF transaction flow.

decision-making on scaling factors. Specifically, we devise
two ML models to predict (1) transaction success rate and
(2) throughput (TPS), which are the two primary metrics in
planning and evaluating blockchain networks [7]. Our models
incorporate scaling factors on horizontal and vertical scaling
(e.g., number of peers and amount of CPU resources) as input
features for prediction.

To train these models, a dataset that includes performance
metrics, specifically transaction success rate and throughput,
across various scaling factors, is required. However, to the
best of our knowledge, such datasets are lacking. Therefore,
we build our own dataset using a representative permissioned
blockchain platform, HLF [8]. By measuring the performance
metrics under diverse scaling factors, we compile a dataset
containing 593 records and train the two prediction models
using this dataset.

Our evaluation of the models shows a prediction error of
up to 1.9%, which demonstrates their high accuracy and prac-
ticality for real world applications. In addition, we demonstrate
the use-cases of these models with the scaling factors not used
in model training. Specifically, we demonstrate two use-cases:
(1) determining the optimal scaling configurations for a given
throughput and (2) predicting the maximum throughput for a
configured blockchain network. These two use-cases highlight
the practicality of the models.

2. Background

2.1. HLF components

The key components of HLF are the channel and two types

of nodes: peer and orderer. Fig. 1 shows a blockchain network
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with one channel (C1), two peer nodes (P1 and P2), and one
orderer node (O1). We explain them in detail. First, a channel
represents a single blockchain network on the HLF. The peer
nodes and orderer nodes participate in the channel. In Fig. 1,
P1, P2, and O1 participate in C1. Each channel has a ledger
(L1) that is replicated by every orderer and peer.

Next, a peer is the endpoint at which clients (users) access
the blockchain. Peers join more than one channel and perform
the execution and endorsement (to be explained in detail at
Section 2.2) for the transaction requests submitted by clients.
Each peer consists of block storage (BS1 in Fig. 1), state DB
(SD1), and chaincode (CC1). Block storage saves the group
of transactions (blocks) of the channel. State DB stores the
current state of the ledger, called the world state. Chaincode
is a program that is executed when a new transaction re-
quest arrives. There are two types of peers: endorsing peers,
which execute chaincode for client transaction requests, and
committer peers, which verify transactions.

In addition, the orderer receives transactions that have
collected sufficient endorsements from peers, and it generates
blocks by determining the order of the endorsed transactions
through a consensus algorithm. Also, the orderer maintains a
block storage to ensure the order and consistency of the created
blocks.

2.2. Transaction flow of HLF

Fig. 2 shows the transaction flow of HLF that consists
of three phases: execute, order, and validate. When clients
request transactions, (1) peers execute (endorse) transactions,
(2) orderers organize transactions with a consensus algorithm
and generate blocks, and (3) peers validate blocks and update
(commit) them into the ledger. We explain each phase in detail
below.

Execute phase begins when the endorsing peer receives
a transaction request ( 1⃝ in Fig. 2). The peer verifies the
transaction’s signature ( 2⃝), simulates the chaincode ( 3⃝), and
igns the transaction, creating an endorsed transaction ( 4⃝). It
hen returns the endorsed transaction to the client ( 5⃝).

Order phase is the subsequent phase of the execute phase.
nce a client has collected enough endorsed transactions, the

lient sends the transactions to the orderer ( 6⃝). The orderer
eceives the transactions and verifies whether the transactions
ontain a sufficient number of endorsements and whether the
ignatures are valid ( 7⃝). It then organizes the transactions in
rder using a consensus algorithm ( 8⃝) and generates a block
9⃝). The ordering phase ends by propagating the generated
lock to all other peers in the channel ( 10⃝).

Validate/Commit phase is the last phase of transaction pro-
essing flow. When a peer receives the block from the orderer,
oth endorsing and committer peers perform several verifica-
ions on the blocks that check (1) whether the signatures of the
ransactions are correct, (2) whether the transactions contain
ufficient endorsements, and (3) whether the data remains
nchanged from the execute phase ( 11⃝ in Fig. 2). After these
erifications, the new block is added to block storage ( 12⃝), and

13
the state DB is updated (⃝).
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ost resources.

CPU Intel Xeon E5-2650 v4
@ 2.20 GHz (24 cores)

RAM 64 GB

Network 10 GbE

OS Ubuntu 18.04.6 LTS

Table 2
HLF setup.

Configuration Value

Endorsement policy 1-of-N
Block size 10
# of channels and orderers 1
CPU quota of orderer 2

2.3. Scalability of HLF

HLF operates the execute-order-validate phases for trans-
actions. In contrast, other blockchain methods [9] first order
transactions and then execute them so that they have to per-
form the same processes in both the order and execute phases.
Compared to them, in HLF, not all nodes are required to
undertake the execution process. Instead, they only need to
obtain the required number of endorsements (results of the
execute phase) from other peers, as required by the chaincode
endorsement policy. Furthermore, endorsements in the execute
phase can be processed in parallel. This distinction allows
HLF to enhance its performance by distributing the peers, thus
enabling horizontal scaling. For example, when the blockchain
network requires only one endorsement to execute a transac-
tion, the execution requests are distributed as 1/n, where n
peers exist.

However, HLF does not exhibit linear scalability in the plat-
form performance, such as throughput or transaction success
rate, when the number of peers increases (horizontal scaling).
We observed the non-linear scalability in our experiments, but
we had to omit the detailed results due to the space limit.
Another study [4] also reported the non-linear scalability with
the increasing number of peers where the throughput did not
increase linearly. We find that this scalability is akin to the
vertical scaling as well. Because the scalability is not linear, it
is difficult and important to predict the scaling configurations,
such as the number of peers and CPU quotas, which this paper
addresses.

3. Data collection and model training

3.1. Data collection setup

Machine setup. We use two separate machines with iden-
tical specifications as Table 1: one is for running HLF that
configures a blockchain network, and the other is for running
Hyperledger Caliper, a de-facto benchmark to measure the
performance of HLF. The reason for running HLF compo-
nents on a dedicated machine is to isolate the blockchain
 o

3

performance from external factors such as the network. Thus,
we can measure the performance changes only due to its
own scaling factors. Moreover, running Hyperledger Caliper
consumes significant computing resources that easily interfere
with the performance of HLF. Thus, this configuration isolates
the performance from external factors.

HLF setup. We use a 1-of-N endorsement policy, which
eans that each transaction is endorsed by only one peer. This

olicy allows for rapid distribution of transaction requests as
he number of peers increases. So, this policy clearly shows the
erformance gains through horizontal scaling. In addition, we
et the block size (number of transactions per block), the num-
er of channels, number of orderers, and CPU quota of orderer
o 10, 1, 1, and 2, respectively. These values are determined
y empirical experiments to ensure that the configurations do
ot introduce any bottlenecks in performance measurements
r scaling factor changes. We generate 20000 transactions
very time, each performing bubble sort. This is a common
peration in evaluating HLF [10]. To ensure a clean blockchain
tate, we always reset the entire blockchain network for each
xperiment. Table 2 summarizes the HLF setup.

.2. Data collection

We measure each data record that consists of output fea-
ures (labels) and input features. For the output features, we
valuate two metrics that represent the performance of HLF
s follows:

• Success rate: percentage of transactions that are success-
fully processed (committed) out of the total number of
requested transactions.

• Throughput: number of transactions committed (vali-
dated) by the blockchain network per second.

For the input features, we choose representative vertical and
orizontal scaling factors of HLF [4,5] because the scaling
actors affect the success rate and throughput. For vertical
caling, we choose CPU quota per peer, and for horizontal
caling, we select the number of peers. We also include the
ransaction request rate. The reason is that the transaction
equest rate indicates the speed of transactions entering the
lockchain network per second, so it determines success rate
nd throughput. For example, when the number of peers and
PU quota are both set to 1, we observe that the success

ate fluctuates by 89.2% when the transaction request rate is
ncreased from 250 to 550. This fluctuation is also similarly
bserved in the throughput.

We considered the other factors, such as endorsement pol-
cy and block size, but excluded them because other studies [4,
] also identified CPU quota per peer, number of peers, and
ransaction request rate (three features of our model) as the
actors that change the success rate and throughput for scaling.

For dataset collection, we vary the three input features
ithin the following ranges. First, the CPU quota per peer
aries by the number of physical cores. Our machine has 24
ores, so when we run five peers, we change the CPU quota per
eer from one to four as five cores per peer exceed the capacity

f the machine. Second, the number of peers is increased from
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yperparameter boundaries and 5 selected values.

Model Hyperparameter Search range Selected value

Success rate model

n_estimators 1–50 5
max_depth 1–30 5

min_samples_split 1–100 4
min_samples_leaf 1–50 2

Throughput model

n_estimators 1–50 19
max_depth 1–30 16

min_samples_split 1–100 2
min_samples_leaf 1–50 2

Fig. 3. Prediction accuracy comparison.

1 to 10 in order to ensure the allocation of at least two CPU
quotas for each peer.

Lastly, we change the transaction request rates of 250, 350,
450, and 550. We set this range to avoid network overhead
and to capture the scaling effect clearly. In total, we collect
593 data records by changing the three input features and
measuring the two output features.

3.3. Model training

We train two random forest models: one predicts the suc-
cess rate, and the other predicts throughput. For training, we
split our data records into two: 80% for training models and
the remaining 20% for evaluating the model accuracy. We
test different types of ML models that are widely applied
in performance prediction [11,12], such as multiple linear
regression and polynomial regression models. In this study, we
use the random forest model as it shows the highest accuracy,
which will be explained in Section 4.1.

Random forest models have several hyperparameters that
make differences in prediction accuracy, such as the num-
ber of trees (n estimators), the maximum depth of the trees
(max depth), the minimum number of samples required to
split an internal node (min samples split), and the minimum
number of samples required to be at a leaf node (min samples
leaf). We determine the hyperparameters by grid search [13]

that tests all possible values within the specified boundaries
and selects the best value for prediction accuracy. We choose
a grid search because we observe that, for the random forest
model, even a slight change in hyperparameters impacts the
prediction accuracy. For example, in the success rate prediction
model, when n depth is set to 1, test set accuracy shows
61.6%. However, when n depth is set to 5, test set accuracy
shows 97.2%. Thus, through grid search, we test all possible
configurations to achieve better accuracy. Table 3 lists the
types of hyperparameters, their search boundaries, and the
selected best values for the prediction models’ accuracy.
4

4. Performance of prediction models

Here, we evaluate the trained prediction models. The mod-
els are trained with sklearn v1.3.0 using the same machine that
is used for data collection (Section 3.1).

4.1. Model accuracy

We evaluate the accuracy of the two types of models by
training them using ML algorithms: linear regression, poly-
nomial regression, gradient boosting regression, multi-layer
perceptron regression, and random forest regression. The pre-
diction accuracy is calculated using symmetric mean absolute
percentage error (SMAPE) [14]. A SMAPE value of 10%
means that, on average, the predicted values differ from the
ground truth by 10%. Lower SMAPE indicates better model
accuracy, with 0% indicating the perfect accuracy. Fig. 3
shows the prediction errors of the five algorithms. Among
them, random forest regression shows the lowest errors for
success rate and throughput prediction at 5.6% and 1.9%,
respectively, which are 3.8× and 6.38× better than the other
algorithms on average.

4.2. Model use-cases

Next, we present use-cases that demonstrate how the two
models mitigate the black box issues in scaling blockchain
networks as BaaS in real-world clouds.

Case 1: finding optimal scaling configurations. When
attempting to find the optimal scaling configuration to meet
desired performance requirements of a blockchain network,
the current approach in most cloud environments is to use
repetitive trial-and-error processes. This is due to the absence
of tools or methods to predict performance before provisioning
and running all possible cases of the scaling configurations.

(nc, n p) = arg min
nc,n p

(nc × wc + n p × wp)

where nc ∈ Nc and n p ∈ Np

(1)

We describe the trial-and-error process as Eq. (1). There
re six notations: nc and n p represent the CPU quota and
he peer values, each. Nc and Np represent the sets of all
ossible values for nc and n p. Also, wc and wp represent
he weights given to the CPU quota and number of peers.
hese weights reflect the cost of CPU quota (vertical scaling)
r peers (horizontal scaling). For example, when adding one
CPU costs $1 and adding one VM costs $2, wc is given as 1
nd wp as 2. Thus, Eq. (1) represents the process of (1) testing
ll possible nc and n p values with their weights (wc and wp)
nd (2) selecting the pair whose cost is the minimum.

We assume that our blockchain network on the cloud re-
eives 500 requests per second on average, indicating that its
ransaction request rate is 500. The performance requirements
f the system are as follows: a success rate of 100% and a
hroughput higher than 90% of the transaction request rate
500 × 0.9 = 450). We use the two prediction models to
etermine the proper configurations for the system.
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Fig. 4. Predicted performances (500 transaction request rate).

Fig. 5. Predicted throughput (4 CPU quotas, 4 peers).

Figs. 4(a) and 4(b) present the predictions for the success
rate and throughput, respectively. The x-axis and y-axis of
he figures represent the CPU quota and number of peers,
espectively. We mark each point with two symbols: × symbol

when the predicted performance does not satisfy the desired
performance requirement, and ⃝ when satisfied. For example,
in Fig. 4(a), the point where the x-axis is 1 and the y-axis is 1
is marked with ×, indicating a success rate of less than 100%.
In Fig. 4(b), the point where the x-axis is 5 and y-axis is 5
is marked with ⃝, meaning that the throughput is higher than
450.

Using the prediction results, we can consider only the
points where ⃝ appears as possible scaling configurations
without any real provisioning or execution of BaaS. If wc and
wp are the same (e.g., 1), we can select three peers and four
CPU quotas that satisfy both the success rate and throughput
requirements. We also test our example using a real HLF setup,
achieving a 100% success rate and a transaction rate of 495.3
TPS, confirming that all requirements are met.

Case 2: throughput predictions. For Baas engineers, it is
important to predict the performance of the deployed
blockchain network. This prediction enables the engineers to
make informed decisions in advance about whether to scale
their blockchain based on their expected transaction demands.
As a means of predicting performance, we utilize the two
trained models. We assume that we have deployed a BaaS
network, scaled with both the CPU quotas and peers set to
four. In this system, we aim to determine how the throughput
changes when the upcoming transaction request rates vary
from 250 to 650.

Fig. 5 shows the predicted throughput values when the
transaction request rates vary. The throughput increases up to
509.3 when the transaction request rate increases to 550. How-
ever, beyond this rate, the throughput begins to decrease until
the transaction request rate reaches 650. We also validate the
predicted performance by measuring the actual performance of
5

a real system. We measure four representative request rates —
300, 400, 500, and 600 — that are not used for model training.
The measured throughput values are 298.9, 398.6, 497.2, and
497.9, respectively. By comparing the measured performance
with the predicted ones in Fig. 5, the average prediction error
is 5%, which is reasonable.

Based on the accurate prediction results, BaaS engineers
can predict that, in a configuration with four peers and four
CPU quotas, the maximum throughput is 509.3 when the
transaction request rate is 550. If the BaaS system is expected
to receive a transaction request rate that is higher than 550,
scale-in for the system is required.

5. Related work

Existing studies mainly focused on performance and re-
source consumption analysis and revealed several limitations.
Thakkar et al. [15] provided an analysis of HLF v1.1, and an-
other work [4] identified scalability bottlenecks and suggested
a validation scheme on a subset of transactions for scalabil-
ity. Despite the efforts, previous studies lacked performance
prediction methods for HLF. Sukhwani et al. [6] modeled
performance metrics; however, success rates were not covered,
and it has practicality issues due to the complexity of using
stochastic reward nets. In contrast, our study introduces ML-
based models for horizontal and vertical scaling, with a recent
platform and practical use-cases.

6. Discussion

Model overfitting. We use K-fold cross-validation to check
the overfitting of the trained models, which provides the base-
line prediction accuracy when overfitting is prevented [16].
So, if the accuracy from K-fold cross-validation is similar
to the accuracy of our trained models, it indicates that our
models are far from overfitting. K-fold cross-validation splits
the dataset into K equal parts (folds) and uses a different fold
for validation each time. Thus, even using the same dataset,
the model is trained and validated K times, each time using a
different fold for validation (to determine model convergence).
We choose K = 10 as [17]. The result is 7.4% SMAPE on
average for the success rate model and 1.4% for the throughput
model. These values differ by only 1.2% from our model
training results in Section 4.1, thus showing that our models
are not overfitting.

Prediction model on public blockchain. Our work fo-
cuses on the scaling factors of private blockchains. In public
blockchain platforms, the number of peers or the resources per
peer cannot be determined, as public blockchains allow free
participation of any device. Therefore, our prediction models
are designed for private blockchains, where the number of
peers (horizontal scaling) or the CPU quota (vertical scal-
ing) can be configured. For future work, we plan to design
the performance prediction models for public blockchains by
considering their configuration parameters [18,19], such as
consensus mechanisms and block time.

Different platforms. Among private blockchain platforms,

we choose HLF as the base platform to develop prediction
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odels because it is the de-facto platform for running BaaS
n clouds, such as IBM Cloud [20], AWS [3], and GCP [2].
ther studies on blockchain performance [1,4,6] have used
LF. We believe that our prediction models can be trained

nd validated for different platforms, such as Hyperledger
esu and Ethereum, because they handle transactions similar

o HLF, and the scaling factors in transaction processing are
dentical [21,22]. For future work, we plan to extend our

odels to other platforms.

. Conclusion

This study presents two ML-based performance prediction
odels for transaction success rate and throughput. Our pre-

iction models exhibit prediction errors of 1.9% for various
orizontal and vertical scaling factors, which is highly ac-
urate. Furthermore, we present two useful cases in which
rediction models can benefit BaaS users by enabling them to
etermine scaling configurations or predict their performance.
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