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Abstract—This paper presents V-Sight, a network monitoring framework for programmable virtual networks in clouds. Network
virtualization based on software-defined networking (SDN-NV) in clouds makes it possible to realize programmable virtual networks;
consequently, this technology offers many benefits to cloud services for tenants. However, to the best of our knowledge, network
monitoring, which is a prerequisite for managing and optimizing virtual networks, has not been investigated in the context of SDN-NV
systems. As the first framework for network monitoring in SDN-NV, we identify three challenges: non-isolated and inaccurate statistics,
high monitoring delay, and excessive control channel consumption for gathering statistics. To address these challenges, V-Sight
introduces three key mechanisms: 1) statistics virtualization for isolated statistics, 2) transmission disaggregation for reduced
transmission delay, and 3) pCollector aggregation for efficient control channel consumption. The evaluation results reveal that V-Sight
successfully provides accurate and isolated statistics while reducing the monitoring delay and control channel consumption in orders of
magnitude. We also show that V-Sight can achieve a data plane throughput close to that of non-virtualized SDN.
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1 INTRODUCTION

N ETWORK virtualization (NV) is a vital technology in
datacenters [2]. NV creates virtual networks (VNs)

for tenants based on a single physical network infrastruc-
ture and isolates network traffic between the VNs. Because
tenants require isolated network connections between their
computing nodes, such as virtual machines (VMs) and con-
tainers, NV is widely deployed in cloud datacenters [3], [4].
To implement NV, overlay networking of TCP/IP network
stacks is commonly used. Overlay networking distinguishes
the packets of multiple tenants with a tenant identifier (TID)
attached as an additional encapsulated header.

However, overlay networking has a critical
shortcoming—it does not allow tenants to configure or
program their VNs [5] because the underlying network
resources (e.g., switches, ports, and links) are solely
determined by datacenter operators. Therefore, tenants
cannot install their desired network policies (e.g., flow
entries for packet forwarding or redirection to a proxy) in
an arbitrary VN switch. In addition, tenants cannot create a
VN topology between their VMs or containers as required.

This limitation translates into a severe problem because
many applications demand in-network optimizations (e.g.,
OpenFlow [6] and P4 [7]) or their own network architectures
(e.g., information-centric networking [8]), which requires
programmable networks. Their objective is to enhance the
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service quality of the applications. However, due to the
restricted programmability of overlay networking, such op-
timizations are hindered in clouds [5]. Consequently, pro-
grammable VNs have been identified as a critical missing
component for NV [9], [10].

Fortunately, software-defined networking (SDN) pro-
vides a new path for NV [5]. SDN is a network system
structure that splits the network control and packet forward-
ing functionalities. SDN centralizes the network control
functions into software (SDN controller). Because multiple
tenants are present in clouds, each tenant can have its own
SDN controller (tenant controller)1, which leads to SDN-
based NV (SDN-NV). One of the SDN-NV architectures
utilizes the network hypervisor [5], [11], [12], [13] that sits
between the physical network and the tenant controllers.

Network hypervisors support VN abstractions, such
as virtual switches, links, ports [11], and addresses [13].
With the abstractions provided, SDN-NV can provide pro-
grammability to tenants [13]. In other words, each tenant
can have a virtualized SDN so that it can create its own
VN topology and program its VN using SDN controllers
(e.g., POX [14], ONOS [15], or OpenDayLight [16]). There
have been advances in network hypervisor technology that
enhance the scalability [17], [18] and flexibility [19].

Nevertheless, to the best of our knowledge, no study
has discussed network monitoring for SDN-NV (details in
§2.4). Network monitoring is a vital prerequisite for VN
management in providing statistics. For example, gathering
the processed volume of traffic for each flow entry or port
is a basis of link utilization for network management, such
as QoS routing, network planning, and anomaly detection

1. Typically, SDN controllers (e.g., POX, ONOS, OpenDayLight) are
used as tenant controllers. Thus, throughout this paper, we use the
terms “SDN controller” and “tenant controller” interchangeably. We
use the term “SDN controller” for the context of non-virtualized SDN,
and the term “tenant controller” for SDN-based NV
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[20], [21], [22], [23], [24]. Specifically, a research paper of
Microsoft has reported that despite the significant difficul-
ties associated with VN monitoring, monitoring of VNs is
necessary because it is key to handling faults in network
infrastructures and providing performant services to tenants
by detecting overheads for each tenant [25]. Despite its such
conspicuous importance, network monitoring has received
relatively little attention in SDN-NV studies.

To address such problems, this paper presents V-Sight,
a comprehensive network monitoring framework for SDN-
NV. As the first framework for network monitoring, V-Sight
faces three main challenges: 1) inaccurate statistics, 2) high
monitoring delay, and 3) excessive control channel traffic
consumption. First, because tenant controllers attempt to
optimize and manage their VNs based on statistics (e.g.,
the volume of traffic processed by a flow entry for rout-
ing), accurate statistics should be provided. In SDN-NV, the
statistics collected in the physical network are the aggregate
of multiple VNs running on the network, but there is no
mechanism that isolates the statistics for each VN.

Second, the SDN-NV system inevitably increases the
delay (so-called transmission delay) between the statistics
request from a tenant controller and the reply from switches.
When the statistics request message arrives at the network
hypervisor from the controller, the network hypervisor must
send the corresponding network statistics request messages
to the physical network (switches) and wait to receive the
results, thus increasing the transmission delay. For example,
if a tenant controller sends a request for “all flow entries
of a virtual switch,” the transmission delay can be high
because the individual flow entries’ statistics are collected
sequentially. Our experiment shows that the transmission
delay increases by up to 333 times compared with that of a
non-virtualized SDN (§2.3.2). The increased delay causes the
collected statistics to be out-of-date; thus, a careful design to
reduce such delay is required.

Third, the network hypervisor consumes control channel
traffic excessively compared with a non-virtualized SDN. In
our experiment, control channel consumption increases by
up to three times (§2.3.3) when the tenant controller asks
for the statistics of all the flow entries per switch. This
high consumption is because the network hypervisor has
to send multiple messages to switches. Considering that
such messages go through the control channel, other traffic
is affected [26]. For instance, our experiment finds that the
flow entry installation time increases by 4.3 times due to the
control channel consumption in retrieving the statistics.

V-Sight addresses the above challenges through three
key mechanisms: 1) statistics virtualization to isolate statis-
tics per VN, 2) transmission disaggregation to reduce trans-
mission delay, and 3) pCollector aggregation to reduce con-
trol channel consumption. Statistics virtualization (§3.2) iso-
lates the virtual network statistics (vStatistics) per VN from
physical network statistics (pStatistics). Transmission disag-
gregation (§3.3) uses caching of frequently used pStatistics.
The caching is performed by a pCollector that retrieves
the pStatistics routinely and stores the data in the network
hypervisor, which removes the delays for pStatistics trans-
mission. Further, we design pCollector aggregation (§3.4)
to reduce the control channel consumption of the pCol-
lector. Instead of collecting the pStatistics from individual
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Fig. 1. SDN-based network virtualization.

pCollectors, pCollector aggregation attempts to merge the
pCollectors to ensure that multiple pStatistics are retrieved
with a single request message, which reduces the number of
messages and thus control channel consumptions.

In short, this paper accomplishes the followings:
• Identification and formulation of three key challenges

for network monitoring in SDN-NV systems: statistics
isolation, monitoring delay, and control channel con-
sumption for network hypervisors.

• Introduction of the new concepts, namely, statistics
virtualization, transmission disaggregation, and pCol-
lector aggregation.

• Full system implementation of the framework as an
open-source software.

• Comprehensive experiments that result in 1) improve-
ment in vStatistics accuracy by three orders of mag-
nitude, 2) up to 454 times reduction in transmission
delay, 3) up to 1.9 times improvement in control channel
consumptions, and 4) 5.5 times variance improvement
in TCP throughput in a practical usage scenario.

The remainder of this paper is organized as follows. §2
describes the background and challenges of network mon-
itoring in SDN-NV. §3 provides the fundamental concepts
and the complete design of V-Sight, and §4 presents the
evaluation results. §2.4 elaborates on related work, and §5
discusses future research directions. Finally, §6 concludes
this paper.

2 BACKGROUND AND MOTIVATION

Here, we explain the background of this study: SDN-NV
and network monitoring. Then, we identify challenges for
the network monitoring framework in SDN-NV systems. In
addition, we comprehensively explain the related work and
the differences of this study.

2.1 SDN-based Network Virtualization

SDN-NV comprises three layers (Fig. 1), namely, tenant
controllers, network hypervisor, and physical network (PN).
A tenant refers to a user or a group of users who share the
authority for using the given resources provided by a cloud.
We denote a physical network connecting the servers of a
datacenter as PN. Based on the PN, each tenant provides
VN, which stands for virtual networks over PN.

A tenant controller can create its VN’s topology with VN
resources, such as virtual switches, links, and ports, when
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Fig. 2. Steps of network monitoring.

the tenant controller sends a request to the network hyper-
visor. When the network hypervisor receives the request, it
substantiates the VN resources with mappings to the PN
resources. For instance, a virtual switch operates based on
the mapping of one physical switch or a set of physical
switches and links. The virtual port (vp) for each virtual
switch is also mapped to the physical port (pp). In addition,
a virtual link can be created by connecting two vps.

After the VN topology is created, the network hypervisor
emulates the requested VN resources as they are standard
SDN switches. The tenant controller then manages the
created VN resources without recognizing whether its re-
sources are virtualized or not. The tenant controller connects
to the virtual switches through south-bound interfaces (e.g.,
OpenFlow) and implements flow entries that match packets
to ensure that it can process (e.g., forward) the matched
packets. These operations are achieved by control messages
from the tenant controller, and the messages pass through
the control channel.

VN resources and flow entries are mapped to the cor-
responding resources in the PN, which implies that the
PN resources can be mapped to either one or more of the
VN resources. Thus, the flow entries from multiple tenant
controllers can be mapped to a smaller number of physical
flow entries [17], [18]. Throughout this paper, the term V
represents a virtualization function, and V’ represents a de-
virtualization function—these functions map PN resources
to the VN resource, or vice versa. For example, when a
physical flow entry (pf ) is given, V(pf ) provides the virtual
flow entries (vfs) mapped to the pf . Similarly, given a
virtual switch S, V’(S) generates the list of physical switches
and links mapped to S.

2.2 Network Monitoring

2.2.1 Network monitoring in SDN
Network monitoring in SDN involves three steps (Fig. 2a):
1© collection, 2© transmission, and 3© analysis [27]. The

statistics are recorded at the switches, which measure the
processed number of packets per flow entry or port ( 1©
collection). We denote the statistics of a network resource

by the notation S. For example, S(pfi) and S(ppj) represent
the statistics of pfi and ppj . An SDN controller then gathers
the statistics from a switch ( 2© transmission). With the col-
lected information, the SDN controller analyzes, manages,
and optimizes the networks ( 3© analysis).

We additionally explain the sizes of statistics request
and reply messages. Both messages consist of a packet
header, usually an Ethernet, IP, TCP, or OpenFlow header,
and payloads. The header sizes of requests and replies are
similar (l(H)). A request’s payload is the network resource
to be monitored. For example, in case of flow entry, the IP
addresses or actions that the entry performs are included.
The reply’s payload includes the same network resource and
its statistics. The size of the network resource i included in
both request and reply payloads is l(I(i)), and the size of
actual statistics included in the reply payload is l(S(i)).

For example, in SDN, an ONOS controller [15] sends
statistics requests messages toward flow entries and ports
of a switch every 5 s as its default settings. The statistics
transmission process is finished when the SDN controller re-
ceives the corresponding reply messages from the switches,
and the transmission time can be longer or shorter than 5
s. Note that the statistics request sending interval can be
changed by a network operator.

2.2.2 Network monitoring in SDN-NV
Fig. 2b shows the network monitoring in SDN-NV. In SDN-
NV, the switches in PN collect S(pf) and S(pp) ( 1© in
Fig.2b), similar to the collection step of SDN ( 1© in Fig.2a).
In SDN-NV, the tenant controllers perform the transmission
process ( 2© in Fig.2a). However, the difference is that as
the controllers face the virtual switches (which is a network
hypervisor), the statistics request is delivered to the network
hypervisor instead of PN switches ( a© in Fig. 2b. The net-
work hypervisor then appropriately handles the request and
generates a reply for the request. For example, the network
hypervisor should collect the statistics corresponding to
the request from the PN switches (( b© in Fig. 2b, which
may be multiple transmissions according to VN and PN
mappings) and generates a reply message based on the
collected statistics. However, to the best of our knowledge,
existing NHs lack an appropriate scheme for handling such
requests from tenant controllers ( 4© in Fig. 2b, details in
§2.4.1), resulting in critical challenges (discussed in §2.3).

For further discussions, we formalize several notations
for network monitoring in SDN-NV. First, the transmission
time for the statistics request and reply messages between
the tenant controller and the network hypervisor is denoted
as dv . This time is identical to the round-trip-time (RTT)
between the tenant controller and network hypervisor. The
transmission time for the statistics request and reply mes-
sage between the network hypervisor and PN switches is
denoted as dp. In addition, the processing time in the net-
work hypervisor for calculating vStatistics and generating
the reply message for tenant controllers is denoted as dNH .
Table 1 summarizes the terminologies explained up to now.

2.3 Challenges of Network Monitoring for SDN-NV
Here, we discuss the three network monitoring challenges
in SDN-NV systems in detail, which motivates the de-
velopment of V-Sight. The challenges here represent the
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TABLE 1
Terminologies and their description.

Terminology Description
pStatistics
vStatistics

Statistics of physical network resource
Statistics of virtual network resource

Tenant A user or group of users sharing the resources provided
by a cloud

PN Datacenter network connecting physical servers for VMs
and containers

VN An isolated logical network given for a tenant
pf , pp Physical flow entry and physical port
V (i)
V ′(j)

VN resources mapped to PN resource i
PN resources mapped to VN resource j

S(i) Statistics of the network resource i
l(H)
l(I(i)), l(S(i))

Header length of statistics request/reply
Length of information, statistics of i in payload

dv Transmission time of vStatistics request or reply message
dp Transmission time of pStatistics request or reply message
dNH Processing time of network hypervisor for vStatistics

pPort1

vPort1 vPort2 vPort3

Physical network

VN1 VN2 VN 3

Network hypervisor
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controller
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controller
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Fig. 3. Non-isolated statistics example.

problems that V-Sight should overcome as the first network
monitoring framework for SDN-NV systems.

2.3.1 Non-isolated and inaccurate statistics

In SDN-NV, the PN resources (e.g., switches and ports) are
shared among multiple VNs. Thus, the collected statistics
from PN resources are not isolated between the VNs. The
pStatistics collected in PN switches can be expressed as
follows. For the PN resources i (e.g., pf or pp), S(i) =∑

j∈V (i) S(j). Fig. 3 shows an example of three VNs, each
comprising one vp. In this scenario, all vps are mapped to
the same pp (pPort1). Suppose that the tenant1 controller
retrieves the statistics of vPort1. Because pPort1 is unaware
of the presence of multiple VNs, S(vPort1) collected in PN
is the sum of S(vPort1) + S(vPort2) + S(vPort3). This
indicates that pStatistics does not separate the statistics per
VN. Thus, the tenant1 controller ends up with aggregated
statistics which is inaccurate for VN1.

Statistics are used for various network management
operations of tenant controllers, such as cost-based central
routing, traffic engineering, and QoS. However, with non-
isolated statistics, tenant controllers cannot accomplish their
desired management operations. Thus, V-Sight should be
capable of isolating statistics in the sense that the statistics
provided to each tenant should only contain information
regarding a particular VN, not the aggregated statistics.

2.3.2 High transmission delay

Network monitoring is performed repeatedly to track the
changing statistics. A reply to a statistics request should
arrive as quickly as possible because any transmission delay
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Fig. 4. Statistics transmission delay comparison (ms).

between the request and reply messages distances the value
of the statistics from the request time.

We conduct an experiment to determine the increase
in transmission delay. Existing network hypervisors do not
support network monitoring; thus, we implement a simple
monitoring function on Libera [5], which is an open-source
network hypervisor. The implementation receives the statis-
tics requests from tenant controllers and then gathers the
corresponding statistics from the PN based on the mappings
between the VNs and the PN. The monitoring function
replies to the tenant controllers after all pStatistics from
the physical switches arrive. We call evaluations performed
using this implementation, NH+SM. The experiment is con-
ducted in a 4-ary fat-tree topology with 2, 4, 8, 16, and
32 TCP connections with one VN. The tenant controller
issues statistics requests at 5 s intervals for every switch
in its network, requesting the statistics of all flow entries of
each switch. As described in Fig. 4, the non-virtualized SDN
(Native) case exhibits almost constant statistics transmission
delays, at 4.6 ms on average, regardless of the number of
network connections. In contrast, NH+SM exhibits delays
of 187 to 1,836 ms, which are 38 to 333 times higher than
that of Native.

We formulate the transmission delay of NH+SM and NH
to determine the reason of the increased delay by using
the notations introduced in Table 1. For a request message
from a tenant controller that retrieves the statistics of all
flow entries of a virtual switch, we refer to the number
of flow entries of the switch as n. Then, the transmission
delay of NH+SM is formulated as dv + ndp + dNH , which
is the sum of the following instances: 1) one dv vStatistics
transmission, 2) n instances of pStatistics transmissions, and
3) one instance of processing in the network hypervisor for
a vStatistics calculation and reply message creation (dNH ).

On the other hand, the total transmission delay in the
Native case is dc because a single statistics transmission
between the PN and the SDN controller can retrieve all
existing flow entries of a switch. Note that NH+SM cannot
retrieve n numbers of pfs in a single transmission because
NH+SM collects only the pfs mapped to the tenant and
the PN switches contain the pfs of other tenants at the
same time. Consequently, the transmission delay of NH+SM
includes the additional time of ndp + dNH , which increases
this transmission delay by up to 1.84 s (Fig. 4).

2.3.3 Excessive control channel consumption
Statistics transmission passes through the control channel.
In SDN-NV, two types of control channels exist: between the
network hypervisor and tenant controllers, and between the
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Fig. 5. Control channel consumption comparison (bytes per second).

network hypervisor and physical switches. In this study, we
focus on the latter because the traffic between the network
hypervisor and physical switches is increased by network
virtualization. A network hypervisor emulates ordinary
switches with virtual switches so that SDN controllers can
be used as tenant controllers without any further modifica-
tion [5]. Thus, the traffic between the network hypervisor
and tenant controllers is similar to the control traffic in
non-virtualized SDN. Therefore, this study presents and
aims to reduce the control traffic increased by network
virtualization, which is the traffic between the hypervisor
and physical switches.

The control channel is utilized by tenant controllers for
control operations, such as switch connection handshaking,
flow entry installation and modification, the topology dis-
covery process, and ARP processing. Thus, when the control
channel consumption for statistics increases from 5.11 to 22
KB/s, we find that the flow entry installation suffers a four
times higher delay (from 86 to 368 ms). Moreover, because
operations such as flow entry installation can reduce the
throughput of network connections, the control channel
consumption for network monitoring should be reduced.

To be precise, we evaluate the control channel con-
sumption for the network monitoring of NH+SM. We set
a linear topology with five switches and three VNs. Each
VN consists of two hosts at the edge of the topology with 6,
12, 18, 24, and 30 network connections in PN. We conduct
experiments with the same monitoring function as §2.3.2.
Fig. 5 shows the control channel consumption for the flow
statistics transmission. The results for NH+SM are 1.5 to 2.3
times higher than those of Native.

In NH+SM, a network hypervisor collects the statistics
for a request as follows. It first checks the existing vfs in the
requested switch. Let us denote a set of vfs in the requested
virtual switch as Fvf . For each element of j in Fvf , the
network hypervisor finds the mapped pfs to j and sends the
statistics request messages one-by-one. The reply message
arrives at the network hypervisor for each request message.
The control channel consumption from network monitoring,
which is the total of request and reply messages, is thus
formulated by the sum of the size of total request messages∑

j∈Fvf

∑
k∈V ′(j) l(H) + l(I(k)) and the size of total reply

messages
∑

j∈Fvf

∑
k∈V ′(j) l(H) + l(I(k)) + l(S(k)).

On the other hand, in Native, SDN controllers can collect
all pfs existing in a switch through a single request and
reply by assigning ”all entry” as the payload of the request
message. We denote the payload size for ”all flow entry”
message as l(∗vf ); then, the size of the request message be-
comes l(H)+l(∗vf ). When a set of pfs in the physical switch

is denoted by Fpf , the size of the reply message becomes∑
i∈Fvf

l(H) + l(I(i)) + l(S(i)). Thus, control channel con-
sumption, which is the sum of request and reply messages,
is quite higher in NH+SM than in Native.

2.4 Related Work

In this section, we first explain the existing studies on
network hypervisors and their consideration in network
monitoring. Then, we review the existing studies on net-
work monitoring in non-virtualized SDN and summarize
the differences of V-Sight compared with them.

2.4.1 Related studies on NH and monitoring

Table 2 presents the descriptions and objectives of existing
network hypervisors. FlowVisor [11] introduced the first
idea of NV in SDN, and FlowN [12] defined abstractions
for virtual networks, such as virtual addresses, based on
containers. OpenVirteX [13] defined address virtualization
schemes based on mapping between virtual and physical
addresses, which can provide full address field accesses
to tenants. AutoSlice [28] and AutoVFlow [29] proposed
a distributed network hypervisor to improve the platform
scalability. Also, CoVisor [31] designed a policy composition
framework for a network to be managed using heteroge-
neous SDN controllers. Libera [5] defined a cloud-service
model based on the SDN-NV system.

In addition, FlowVirt [17] proposed flow entry virtu-
alization, which maps multiple physical flow entries to
virtual flow entries, thereby reducing the amount of switch
memory. LiteVisor [18] proposed a new packet forwarding
scheme named LITE, which separates the address, location
identifier, and tenant identifier to effectively manage and
update information in a datacenter. TeaVisor [32] proposed
path virtualization, which ensures provision of the re-
quested bandwidth of each tenant by leveraging multipath
routing, bandwidth reservation, and bandwidth limiting.

The above studies improve different aspects of SDN-
NV systems to make the system feasible and reliable in
cloud computing. Including the content of the survey papers
on NV [33], [34], [35], however, we find that studies on
network hypervisors do not cover network monitoring for
tenants (i.e., non-isolated statistics, transmission delay, and
control channel consumption). In addition, Microsoft has
mentioned that the monitoring of the virtualized networks
in cloud systems has not been investigated [25]. Thus, to the
best of our knowledge, no previous study has focused on
network monitoring for tenants, and this fact motivates us
to develop V-Sight.

2.4.2 Related studies on monitoring in non-virtualized SDN

The SDN controllers, used as tenant controllers, provide
APIs or sub-modules for network monitoring (e.g., fwd in
ONOS or OpenFlow Plugin in OpenDayLight). Such tools
are used for creating statistics request messages and pro-
cessing the reply messages to be received according to the
request. To work with such tools and physical networks,
we aim to design V-Sight to generate proper statistics reply
messages containing the isolated statistics, with reasonable
transmission delay and control channel consumptions.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3089225

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON CLOUD COMPUTING 6

TABLE 2
Related studies analysis—network hypervisor.

Study Description
Monitoring challenges in SDN-NV

Statistics
isolation

High trans-
mission delay

Excessive control
channel consumption

FlowVisor [11] Divide network resources such as address and topology and allocate them to tenants Not solved Not solved Not solved

FlowN [12] Design an address virtualization scheme (based on FlowN) and container-based tenant
controller architecture Not solved Not solved Not solved

OpenVirteX [13] Design address virtualization that provides an access to entire address fields Not solved Not solved Not solved
AutoSlice [28] Design network hypervisor as a distributed system (multiple proxies) Not solved Not solved Not solved
AutoVFlow [29] In addition to AutoSlice, AutoVFlow enables entire address space to tenants Not solved Not solved Not solved
HyperFlex [30] Disaggregate the functions of an internal network hypervisor to flexibly locate them Not solved Not solved Not solved
CoVisor [31] Design composition policies for flow entries coming from various SDN controllers Not solved Not solved Not solved

Libera [5] Define the architecture, APIs, and essential operations of SDN-NV for cloud
datacenters, summarized as Libera Not solved Not solved Not solved

FlowVirt [17] Aggregate multiple flow entries of tenants into a smaller number of physical ones Not solved Not solved Not solved
LiteVisor [18] Suggest a routing scheme for separating the location, identifier, and tenant distinguisher Not solved Not solved Not solved

TeaVisor [32] Design path virtualization, a customized multipath routing, bandwidth reservation,
and bandwidth limiting, for SDN-NV Not solved Not solved Not solved

V-Sight Provide isolated statistics and reduce statistics transmission delay and
control channel consumption Solved (§3.2) Solved (§3.3) Solved (§3.4)

TABLE 3
Related studies analysis—network monitoring in non-virtualized SDN.

Designs Evaluation methodology
New switch
architecture

New
API Sampling Adaptive interval Others Implementation Network topology/trace

OpenSketch [36] X X
Switch: NetFPGA-based HW CAIDA packet trace

or single switchController: C++ SW

SDN-Mon [37] X X
Switch: Lagopus-based SW Single switchController: Module on Ryu

OpenSample [21] X(packet) Module on Floodlight 4-ary fat-tree
and four switches

OpenTM [22] X(flow) Module on NOX Custom linear
topology (ten switches)

FlowCover [23] X(switch) Simulator Erdős–Rényi graph,
Waxman graph

OpenNetMon [38] X(flow) Module on POX Linear topology
(four switches)

cFlow [20] X(flow) Simulator GEANT trace
Tahaei et. al. [39] X(switch) X(link utilization) Module on Floodlight Fat-tree topology
PayLess [24] X(link utilization) Module on Floodlight Tree topology

IPro [40] X(reinforcement
learning) SW based on Ryu API Custom tree

topology (11 switches)

MicroTE [41] Split controller and
monitoring framework Kernel module on Linux Tree topology

FlowSense [42] X
Embed statistics in
other messages

NA Linear topology
(two switches)

Simulator EDU1 trace

V-Sight Not relevant (can work together) Internal scheme
in Libera

Linear (five switches) and
4-ary fat-tree topology

Various studies have been proposed to reduce monitor-
ing overheads in non-virtualized SDN. Table 3 summarizes
these studies by comparing their key designs and evaluation
methodology. The objectives of these studies are mostly to
reduce the monitoring overheads between SDN controllers
and switches while maintaining a degree of statistics accu-
racy. We explain these studies comprehensively here.

First, OpenSketch [36] and SDN-Mon [37] introduced
new monitoring architectures to reduce monitoring over-
heads on both the switch and controller sides; thus, they
require architecture modification on switches and API mod-
ification on SDN controllers. For example, OpenSketch de-
signs a hash-based architecture that collects statistics based
on the hash result of each flow. The memory for collec-
tion statistics in switches reduces, and the traffic or delay
in statistic transmission decreases accordingly. SDN-Mon
introduced a switch architecture that separates the flow
table for packet routing and statistics collection so that
the collection in switches can be performed with different
granularities from flow entries. Because statistics collection
can be performed in a more coarse-grained manner than the
flow entries, the monitoring overhead can be reduced.

Second, OpenSample [21], OpenTM [22], FlowCover
[23], OpenNetMon [38], and cFlow [20] perform sampling

on monitoring, which means that parts of the statistics are
selectively gathered to reduce overhead. OpenSample per-
forms sampling on packets on the network and calculates
the flow and port statistics based on the sampled packets.
OpenTM monitors only statistics of some flows for calcu-
lating link utilization. FlowCover selects network switches
using greedy algorithms and heuristics in response to flow
changes. OpenNetMon monitors only edge switches for per-
flow statistics. In addition, cFlow calculates link utilization
using machine learning, and the required flows that have
high impact on the prediction accuracy of utilization are
prioritized and monitored.

Third, Tahaei et al. [39], PayLess [24], and IPro [40]
regulated the monitoring interval. Tahaei et al. introduced
a monitoring scheme that frequently measures the statistics
that contribute more highly to link utilization than others.
They also designed their scheme as sampling because their
scheme only monitors the statistics of top-of-rack or edge
switches. PayLess regulates the monitoring interval of each
flow according to its contribution on link utilization, similar
to the scheme of Tahaei et al. IPro regulates the monitoring
interval using reinforcement learning.

In addition, MicroTE [41] implemented monitoring and
traffic engineering functions on a separate machine from the
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SDN controllers; thus, the bottleneck is removed from the
controller itself. FlowSense [42] introduced a technique for
removing additional statistics request messages from con-
trollers by embedding the statistics values in other Open-
Flow messages, such as PacketIn (for flow entry generation)
or FlowRemoved (notification for the event that the flow
entry has been deleted).

The above-mentioned studies change the schemes of
statistics collection or the manner of transmission (e.g., the
number or intervals of statistics request messages). On the
other hand, the goal of V-Sight is to provide isolated statis-
tics and reduce the transmission delay and control channel
consumption of the network hypervisor. Therefore, V-Sight
and the studies above are orthogonal and can work together.

One thing to note is that the evaluation methodology in
Table 3 can be categorized as follows. First, previous studies
[36], [37] proposed a new architecture for monitoring and
evaluated the architecture through a hardware prototype.
Using the hardware prototype, evaluations are conducted
on relatively small testbeds, usually a single switch, or simu-
lations using traces. Second, other studies [20], [23], [42] im-
plemented their solutions as a type of simulator and tested
them based on network traces. In addition, several studies
[21], [22], [24], [38], [39], [40] implemented a component
(module) atop an existing SDN controller (e.g., Floodlight,
NOX, POX, or Ryu) and evaluated the component using
actual switches (e.g., Open vSwitch).

For evaluations with switches, previous studies used lin-
ear and fat-tree topologies that do not contain routing loops.
We believe that this topology selection is performed because
the existing SDN controllers are not capable of properly
handling routing loops in a network topology [43]. Thus,
we expect to conduct experiments when SDN controllers
become capable of handling routing loops. In the meantime,
we fully implement V-Sight in a network hypervisor and
evaluate V-Sight with linear and fat-tree topologies (§4).

3 V-SIGHT DESIGN

In this section, we first introduce the overall architecture of
the V-Sight framework and its operations. We then present
three mechanisms of V-Sight: 1) statistics virtualization for
isolated statistics, 2) transmission disaggregation for im-
proved transmission delay, and 3) pCollector aggregation
for reduced control channel consumption.

3.1 V-Sight Framework Architecture

Fig. 6 shows the architecture of the V-Sight framework.
The processing sequence of V-Sight is as follows. When a
statistics request (e.g., vf or vp) from a tenant controller is
sent, the statistics virtualization component (§3.2) of V-Sight
receives the message and calculates the requested vStatistics
based on the pStatistics. For calculation, V-Sight references
the virtualization map that maintains mappings between the
VN and PN resources.

The pStatistics required for vStatistics calculation is ob-
tained from the “pStatistics cache.” Transmission disaggre-
gation (§3.3) maintains the pStatistics cache, and the cache
is filled by the pCollector. Transmission disaggregation en-
ables a pCollector to run before the vStatistics request. A

pCollector aggregation

V-Sight

Tenant
controllers

Network hypervisor

Tenant controller 1 Tenant controller 2 Tenant controller 3

Transmission disaggregation

pStatistics cacheRequest interval estimation

pCollector tuner

Physical
network

pCollectors

…
pCollector filter

pStatistics

vStatistics

Statistics virtualization

Flow entry Port
Virtualization

map

Fig. 6. V-Sight architecture.

key point of transmission disaggregation is to prepare the
pStatistics needed for the vStatistics by disaggregating the
time the vStatistics comes in and the time at which the
pStatistics is ready. In other words, transmission disag-
gregation ensures that the pStatistics is in the pStatistics
cache before the vStatistics request arrives. To achieve this,
transmission disaggregation performs the “request interval
estimation.”

pCollector aggregation (§3.4) consists of two tasks: the
“pCollector filter” decides the execution period of each
pCollector and checks whether pCollectors can be merged
as one pCollector for a specific physical switch; and the
“pCollector tuner” decides the starting delay of a pCollector
for improved accuracy.

3.2 Statistics Virtualization
Statistics virtualization aims to provide per-VN vStatistics
from non-isolated pStatistics. We develop calculation algo-
rithms for vfs (flow entry) and vps (port), which are the
most fine-grained resources of network monitoring in SDN
networks [6]. Other resources (e.g., flow table, switch, or
entire network) can be derived from the per-VN statistics.

3.2.1 Per-VN flow entry statistics
For statistics isolation, V-Sight checks the mapping between
vf and pf from the virtualization map (in the statistics
virtualization component of Fig. 6), which maintains the
relationships between the vf from tenant controllers and pf
existing in the PN. The mapping of vf is used in two ways.
First, if pf is not shared with the other VNs (|V (pf)| = 1),
the statistics of pf become the statistics of vf . Second, pf
is shared between VNs2 (|V (pf)| > 1) [17], [18], [44]. In
this case, because the pf aggregates all the statistics of

2. Multiple VNs can share flow entries when NH merges flow entries
in order to reduce the physical memory consumed by the flow entries
[17], [18], [44]. The conditions for flow entry merging are: 1) the flow
entries are for packet forwarding, 2) the input port and output port of
the flow entries are identical or their masked IP addresses are identical,
and 3) VN permits the sharing of flow entries.
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Algorithm 1: Per-tenant flow entry statistics.
Input: vf : virtual flow entry for which the VN

controller requires statistics
Output: S(vf): statistics of the vf
pf = V ′(vf)
if |V (pf)| == 1 then

S(vf) = S(pf)
else

if |V (pf)| > 1 then
Epf = Find edge pf of vf
S(vf) = S(Epf )

Return S(vf)

Algorithm 2: Per-tenant port statistics.
Input: vp: virtual port for which the VN controller

requires statistics
vs: virtual switch to which the vp belongs
vf , vf in, vfout: virtual flow entry,
input port of the vf , output port of the vf

Output: S(vp): statistics of the vp
pp = V ′(vp)
if |V (pp)| == 1 then

S(vp) = S(pp)
else

for vfi belongs to vs do
if vf ini == vp then

S(vp).RX+ = S(vfi);
else if vfouti == vp then

S(vp).TX+ = S(vfi)

Return S(vp)

vfs mapped to the pf , V-Sight should not return the pf
statistics directly to the tenant controller. Instead, V-Sight
isolates the pf statistics with the following observation:
even though multiple vfs are mapped to one pf , the vfs for
edge switches (the first and last switches on the forwarding
path) are installed individually per VN. This is because
the packets are dealt with separately per VN in the edge
switches to ensure isolation in NV [18], [44]. In other words,
pf in the edge is allocated per-VN so that the packets at
the edge are delivered to the host (or VM). Thus, V-Sight
returns the pStatistics of the edge switch pf as the requested
vStatistics. Alg. 1 summarizes how to obtain the per-VN
flow entry statistics. Because the vf statistics contain the
packet number (count) and byte (quantity), the algorithm
calculates the count and quantity individually.

3.2.2 Per-VN port statistics
vp statistics include the count and amount of received (RX)
and transmitted (TX) packets. Similar to the flow entry, a pp
can be shared by one or more VNs. If only one VN utilizes
the physical port, the statistics of pp become vp statistics.
Meanwhile, if pp is mapped to multiple vps, it receives and
transmits the traffic of multiple VNs. In this case, V-Sight
uses the vf statistics obtained in Alg. 1 because the vfs
process the packets going to and from the vp of a switch. For
RX packets, V-Sight accumulates the vStatistics of the vfs
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Fig. 7. Transmission delay comparison.

that have vp as their input port. To calculate the TX packet
statistics, V-Sight sums the vf statistics that send packets
out to the vp. This calculation is summarized in Alg. 2.

3.3 Transmission Disaggregation

As formulated in §2.3.2, the increased delay from SDN-NV
is denoted by ndp+dNH . The time dNH is to perform statis-
tics virtualization (§3.2); thus, minimizing the transmission
delay aims to reduce ndp, which is the time for pStatistics
transmissions (Fig. 7b). To reduce ndp, transmission disag-
gregation introduces the pStatistics cache and the request
interval estimation, to reduce the transmission delay from
Fig. 7a to Fig. 7b.

3.3.1 pStatistics cache

The pStatistics cache tracks the time that pStatistics are
stored and whether it has already been used per VN. When
the pStatistics cache contains pStatistics that are not out-of-
date (old), the pStatistics can be directly returned without
retrieving pStatistics from any physical switch of the net-
work hypervisor (hit).

The pStatistics cache is considered old when 1) the re-
trieved time of the pStatistics is longer than the monitoring
interval or 2) it has already been used for the requested
VN. The reasons are as follows. First, when the tenant
controller performs periodic network monitoring, at least
the statistics measured within the request interval should
be returned because, if the statistics are collected before the
interval starts, the value is old with respect to the current
request; so, it is not accurate for the request. Second, if
the stored pStatistics are used for the requested VN, the
tenant controller would have already collected the data at
that time; thus, we consider the data old. If pStatistics do
not exist in the pStatistics cache (miss) or they are old, the
cache retrieves the pStatistics from physical switches. Fig.
7b shows the working of transmission disaggregation.
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When the number of pStatistics required for vStatistics
is n, and k of pStatistics are “hit” (i.e., n − k accesses
to the pStatistics cache are “miss” or “old”), the physical
transmissions of n − k times are conducted for vStatistics.
Subsequently, the entire transmission delay can be reduced
to (1 + n− k)dp + dNH . Therefore, increasing the number k
is important for improving the transmission delay.

In addition, when pStatistics are updated, the pStatis-
tics cache verifies whether the previously stored value has
been used. If the pStatistics stored in the pStatistics cache
are not used for a certain time (e.g., 10 times), they are
removed from the pStatistics cache. This policy prevents
useless transmission disaggregation. Even if the pStatistics
are released, they can be re-cached to the pStatistics cache
when the vStatistics that require pStatistics for statistics
virtualization are requested.

3.3.2 Request interval estimation
The pStatistics cache is filled by pCollectors. A pCollector
exists per pf so that a pCollector executes to retrieve the
pStatistics of the pf of a physical switch. In particular,
we use the term “interval” for the time between two con-
secutive requests from a tenant controller for a pf and
”period” for the time difference between two consecutive
executions of a pCollector. For each pCollector, the period
of execution should be determined. If the period of the
pCollector is much shorter than the request interval, the
pCollector will end up executing multiple times before a
“hit,” which wastes CPU and control channel resources.
Conversely, if the pCollector is executed less often than
the vStatistics requests, the transmission delay cannot be
reduced because the pStatistics are “old.” Therefore, deter-
mining the execution period is very important, and this is
the reason the request interval estimation is used.

The request interval estimation calculates the mean (µ)
and variance (σ) per pf that characterize the VN controller’s
request intervals. For pfi, the request of VN j is denoted as
pfi,j , and its distribution is (µi,j , σi,j). The pStatistics cache
contains a pf identifier (pfi) and VN identifier (j). The k-th
interval for pfi,j is denoted as pfki,j .

Fig. 8 shows the flowchart of the entire request interval
estimation. This process is executed every time the pf
identifier (pfi) and VN identifier (j) are received as per
each vStatistics request. First, the request interval estimation
records the interval between consecutive requests ( 1© in Fig.
8). The request interval estimation calculates (µi,j , σi,j) ( 3©)
once a certain number of intervals is accumulated, which
is denoted as “interval window (w)3.” When the (w + 1)-
th request arrives, the distribution of pfi,j (µi,j , σi,j) is
calculated based on the pf1i,j to pfwi,j . Next, among the
distributions of multiple VNs, V-Sight chooses the interval
distribution that has the minimum µ value ( 5©). In other
words, (µi, σi) = (µi,l, σi,l) where l = argminj µi,j . Requests
that have a higher µ than the selected pfi will “hit” because
the pCollector for pfi based on (µi, σi) stores the statistics
of pfi for those requests in a timely manner. The selected
distribution is passed to the pCollector aggregation ( 6©,
§3.4) as a triple (pfi, µi, σi). Note that a pCollector is created

3. Explicitly, we find that the value 30 is sufficient to obtain a stable
and reliable interval distribution with general SDN controllers.

per pf after the interval window (w number of intervals)
is accumulated. Before the interval window, the pStatistics
cache generates a “miss” for the required pStatistics of pfi,
which makes V-Sight collect pStatistics from the PN for each
request.

Clearly, the request interval of each tenant controller
can change. The request estimation interval flushes the w
number of past intervals (pf1i,j to pfwi,j) after sending a new
interval distribution ( 7©) and accumulates the intervals from
1 to w again. Therefore, for the w number of recorded inter-
vals ( 2©), (µi,j , σi,j) is updated ( 3©). If the pCollector for pfi
has already been created ( 4©), the request interval estimation
checks how much the newly updated µi,j has changed from
the previous value ( 8©). If the changed amount is large (e.g.,
25%), this function selects a new distribution for pfi ( 5©) and
delivers a new triple (pfi, µi, σi) to pCollector aggregation
( 6©).

3.4 pCollector Aggregation

The objective of pCollector aggregation is to execute and
merge pCollectors. Given a triple (pfi, µi, σi) from trans-
mission disaggregation, a pCollector for pfi is created. The
pCollector periodically retrieves the pfi statistics from a
switch. However, if the number of pCollectors increases, the
pCollectors can consume too much of the control channel
(as discussed in §2.3.3).

There are two types of pCollectors, as shown in Fig. 9.
At the top of Fig. 9, three pCollectors retrieve statistics from
their own pf . The bottom of Fig. 9 shows one pCollector
that collects multiple pf statistics of a switch simultane-
ously. The latter pCollector consumes less of the control
channel than the former because the required message sizes
for statistics transmission are smaller. Specifically, for the
statistics requests, the former pCollector should contain the
specific information of individual pf , i; thus, the request
message size is formulated as l(H) + l(I(i)). If n numbers
of the former pCollectors are running, the entire request
message size becomes n × l(H) +

∑
k l(I(ik)). In the reply

message, the statistics for the requested pfs are added, so
n× l(H) +

∑
k l(I(ik)) + l(S(ik)).

In contrast, the request message of the latter pCollector
includes ”all flow entry” instead of individual information
of pfs. The number of request messages then becomes one,
and its size is l(H)+l(I(∗pf )). The payload of the reply mes-
sage does not change compared with the former pCollector
to contain the statistics of each pf , but the replies are cre-
ated as a single message corresponding to a single request
message, resulting in the creation of a single packet header.
Thus, the size of the reply is l(H) +

∑
k l(I(ik) + l(S(ik))

4. Thus, the latter pCollector reduces less control traffic in
amount of (2n− 2)× l(H) +

∑
k l(I(ik))− l(I(∗pf )).

We call the pCollector for a single pf (former) as a “tiny
pCollector” and the other pCollector as an “aggregated
pCollector.” An aggregated pCollector is created when mul-
tiple tiny pCollectors follow a similar period for pfs in a
switch. pCollector aggregation is achieved using two tasks:

4. When the size of the reply exceeds the maximum transmission
unit size, the reply packet fragments. In this case, the number of l(H)
consumed can increase but still be less than the former pCollector,
because the payloads are piggybacked as much as possible.
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Fig. 8. Flowchart of request interval estimation.
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1) a pCollector filter determines the execution period of
the tiny pCollectors and aggregated pCollectors and 2) a
pCollector tuner improves the accuracy of vStatistics. Fig.
10 explains the operation of the two tasks to be discussed in
the following subsections.

3.4.1 pCollector filter
From (pfi, µi, σi), the pCollector filter decides on a period
of the pCollector for pfi. For the tiny pCollector, it is simple.
However, for the aggregated pCollector, even if tenant con-
trollers issue statistics requests with similar intervals, each
µi of pfi can be slightly different (e.g., 4.7, 4.9, and 5.1 s)
because the distribution is estimated based on w samples.
Thus, it is challenging to decide the period of an aggregated
pCollector.

To address this problem, the pCollector filter starts with
tiny pCollectors that have a similar period. From the cumu-
lative probability distribution function derived by µi and
σi, the pCollector filter finds a period range that satisfies
a specific hit rate, such as 90% to 95% ( 1© in Fig. 10). The
requests that have longer intervals than the pCollector’s
period will “hit”; so, this task can stochastically derive the

period range using µi and σi. Next, for every possible
period value within the range, the pCollector filter counts
the number of tiny pCollectors with the period for the
value ( 2©). The period value with the largest number of
tiny pCollectors is selected ( 3©). Once a period is selected,
the pCollector filter calculates the ratio of the number of
tiny pCollectors that follow a similar period to the number
of existing pfs in the switch ( 4©). If the ratio is low, an
aggregated pCollector consumes more control traffic than
the tiny pCollectors. Subsequently, only when the ratio is
high ( 5©), for instance, 70%5, the pCollector tuner merges
tiny pCollectors into an aggregated pCollector.

3.4.2 pCollector tuner
The role of the pCollector tuner is to provide an additional
delay to the first execution of each pCollector in order
to improve the accuracy of vStatistics. In Fig. 11a, a time
difference, which is shown as an arrow with ”t.d.,” exists
between the time the vStatistics requests arrive and the
time the pStatistics are gathered through the pCollector.
This time difference depends on the time at which the
pCollector first runs. If the pCollector is executed slightly
before the vStatistics request, the time difference becomes
small, as shown in Fig. 11b, which implies that the cached
pStatistics are up to date. As the time difference becomes
larger, it decreases the accuracy of vStatistics. Therefore, V-
Sight introduces a “starting delay” to add the delay to the
first execution of the pCollectors.

For tiny pCollectors, the starting delay should be set in
order to execute the tiny pCollector immediately before the
vStatistics requests (coming after the interval window). In
addition, the starting delay should not be too large to pre-
vent the pCollector from being executed after the vStatistics
request, as shown in Fig. 11a. Empirically, we set the starting
delay at 95% of the pCollector period ( 6©-1 in Fig. 10).

Meanwhile, the method of setting the starting delay
for tiny pCollectors leads to poor accuracy for aggregated
pCollectors. This is because the multiple requests managed
by an aggregated pCollector exist at different times in terms
of the pCollector period. Fig. 11c shows an example with
two vStatistics requests from different tenants (tenant2 fol-
lowed by tenant1). If the starting delay is set to 95% of the
aggregated pCollector, the execution time of the aggregated
pCollector is after tenant2 and before tenant1. As shown in
Fig. 11c, tenant2 suffers a long delay because the aggregated
pCollector executes immediately after tenant2’s request.

Therefore, the pCollector tuner sets the starting delay for
the aggregated pCollector as follows. First, the pCollector

5. In our evaluation, we explicitly find that sufficient improvement is
obtained using 70%.
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(a) linear (five switches).

(b) fat-tree (4-ary).

Fig. 12. Experiment topologies.

TABLE 4
Hardware and software specifications.

Server (hardware) specifications.
CPU Intel Xeon E5-2650 (2.30 GHz)
Memory 64 GB
NIC Intel 82599ES 10GbE NIC

Software specifications.

PN Mininet: 2.3.0d6 with Open vSwitch v2.9.5
OS: Ubuntu 18.04

Network
hypervisor

Libera: v0.1
OS: Ubuntu 14.04

Tenant
controller

ONOS: v2.0.0
OS: Ubuntu 16.04.6

tuner checks the request interval estimation (§3.3.2), which
stores the vStatistics request times for each VN ( 6©-2 in Fig.
10). Then, the starting delay is set to be immediately before
the first vStatistics request among the VN requests that the
aggregated pCollector merges, which is tenant2’s request
in Fig. 11d ( 6©-3). In this way, the sum of time differences
from the time the aggregated pCollector executes to the time
each vStatistics request arrives is minimized. Finally, the
pCollector tuner executes the pCollector periodically with
the starting delay ( 7©).

4 EVALUATION

In this section, we present the evaluation results of V-Sight.
V-Sight is implemented on Libera network hypervisor with
OpenFlow version 1.3 (1.8K LoCs) [5], [13]. The source
code of V-Sight is available in the GitHub repository6. We
measure micro-benchmarks, system overheads, and macro-
benchmarks that are explained in detail below. Each experi-
ment is repeated to obtain reliable results.

4.1 Test Setup
4.1.1 Settings
We use three physical servers. Mininet [45], the network
hypervisor, and one or more ONOS as tenant controllers

6. https://github.com/gsyang33/V-Sight. V-Sight is easily
tested through the tutorial from Libera (https://github.com/os-
libera/Libera).

run on separate physical servers. Table 4 summarizes the
hardware and software specifications used for evaluations.
Mininet emulates the PN based on Open vSwitch. We em-
ulate two types of topologies (Fig. 12): 1) a linear topology
consisting of five switches and 2) a 4-ary fat-tree topology to
evaluate the effects on datacenters. For the linear topology,
we create three tenants that clone the PN topology as their
VN topologies. For each tenant, the number of TCP connec-
tions varies (i.e., 2, 4, 6, 8, 10); thus, in the PN, 6, 12, 18, 24,
or 30 connections exist. For the fat-tree topology, we change
the number of connections to 2, 4, 8, 16, and 32 with a single
tenant, resulting in the same number of TCP connections as
in the PN. The TCP connections are generated through the
iperf3 [46]. Each VN is managed by an ONOS controller.
The ONOS monitors all the flow entries and ports of each
switch at 5 s intervals. ONOS controllers run as containers,
and no ONOS container suffers performance or resource
bottlenecks.

4.1.2 Metrics

We evaluate V-Sight based on the following micro-
benchmarking metrics.

• Statistics virtualization accuracy (§4.2): the root mean
squared error (RMSE)—caused by the statistics virtu-
alization algorithms—between the statistics calculated
from the network hypervisor and the actual value.

• Transmission delay (§4.3): the average interval be-
tween the vStatistics request and the reply messages
from/to tenant controllers.

• Control channel consumption (§4.4): the average bytes
per second of the control channel traffic to obtain pf
statistics between the network hypervisor and the phys-
ical switches.

Second, we present three metrics for the system over-
heads of V-Sight as below.

• Time skew of pStatistics cache (§4.5): time skew im-
plies an interval between the vStatistics request time
and pStatistics collection time of the pCollectors—the
average value with 95% confidence interval. This time
skew shows the time difference of transmission disag-
gregation on the accuracy of the pStatistics required for
the vStatistics calculation.

• CPU and memory usage (§4.6): the average CPU cycle
and memory consumption of the V-Sight framework
during the experiment.

Finally, for macro-benchmarks (§4.7) in practice, we
show the effects of V-Sight on tenants by measuring the TCP
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TABLE 5
RMSEs of statistics provided by SDN-NV and V-Sight compared with real values. Quantity is the volume of data processed by each flow entry or

port (shown in the unit of MB), and count is the number of packets processed.

NH+SM V-Sight
Quantity Count Quantity Count

Tenant 1 114.78 10000.83 0.14 10.87
Tenant 2 121.80 10633.79 0.02 8.52
Tenant 3 112.62 9875.42 0.55 13.60

(a) Flow entry statistics.

NH+SM V-Sight
RX TX RX TX

Quantity Count Quantity Count Quantity Count Quantity Count

Tenant 1 65.83 5871.13 65.77 5871.00 0.15 16.85 0.15 16.85
Tenant 2 53.33 4583.02 53.24 4582.68 0.42 37.98 0.41 38.02
Tenant 3 40.92 4469.03 40.38 4468.36 0.88 61.81 0.89 61.94

(b) Port statistics.
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Fig. 13. vStatistics replied by the network hypervisor in comparison with actual values.

throughput, CPU cycle, and control channel consumption of
the tenant controller.

4.1.3 Comparisons
The metrics explained in §4.1.2 are measured in the follow-
ing comparison cases:
• Native: non-virtualized SDN in which physical

switches are directly connected to ONOS without a
network hypervisor.

• Network hypervisor (NH): Libera7 without V-Sight. It
frequently returns no values to the statistics requests
from tenant controllers.

• NH with simple monitoring function (NH+SM): Lib-
era with simple monitoring that is used in §2.3.2.

• V-Sight: the full implementation of V-Sight.

4.2 Statistics Virtualization Accuracy
Statistics virtualization accuracy is measured on the linear
topology with three tenants because accuracy results in
the linear and fat-tree topologies are similar. Each tenant
generates single TCP traffic at different sending rates. We
measure the vStatistics collected from NH+SM and V-Sight
and present the RMSEs of the statistics from the two cases
and the actual values. The vStatistics from V-Sight could
contain errors when the calculation algorithms use the pfs
in edge switches and the statistics of the pf or pp contain the
statistics of multiple tenants (§3.2). In other words, when the
calculation uses statistics from other switches, it can result
in errors. In addition, the pStatistics used for the calculation
are retrieved in advance, not at the requested time, which
can also lead to errors (§3.3). The actual values used for error
calculation are measured from hosts that send and receive
the traffic within each tenant’s VN.

7. To the best of our knowledge, existing network hypervisors (in-
cluding open-source network hypervisors) do not have a complete
network monitoring framework, so we choose Libera, which is up to
date and open-source, for comparison with V-Sight.

Statistics virtualization provides isolated statistics from
the pStatistics. When pf or pp is not shared between mul-
tiple tenants and only mapped to a single tenant, their
statistics are those of the single tenant’s vf or vp. Therefore,
for this evaluation, we set pf and pp to be mapped to
multiple tenants based on the concepts of previous studies
[11], [12], [17], [18].

Table 5 shows the RMSEs of vStatistics provided by
NH+SM and V-Sight per tenant. For both flow entry and
port statistics, two types of vStatistics, namely, quantity and
count (number of packets), are provided. In terms of the
flow entry in Table 5a, the RMSEs for quantity in V-Sight
are less than 1, whereas those of NH+SM are more than
110. For the count, the average RMSE of V-Sight is 10.99,
whereas that of NH+SM is 10170.01—an improvement by
three orders of magnitude.

In terms of port (Table 5b), vStatistics are categorized
into RX and TX for incoming and outgoing traffic, re-
spectively. NH+SM exhibits an average RMSE of 53.25 for
the quantity, whereas V-Sight exhibits an average of 0.48.
Similarly, for the count, NH+SM and V-Sight exhibit the
average values of 4974.20 and 38.91, respectively. In sum-
mary, V-Sight exhibits much better accuracy (by two orders
of magnitude) than NH+SM because NH+SM does not have
any mechanism to provide isolated statistics. This result
implies that the statistics virtualization algorithms of V-
Sight successfully provide isolated statistics from pStatistics.

In addition, Fig. 13 shows the vStatistics over time,
which the tenant controller receives in response to its re-
quests from NH+SM and V-Sight. The monitoring results
of tenant 2’s vf and vp installed in the center switch of
the linear topology are shown as representative results.
Each point represents the number of quantities or counts
processed since the previous statistics reply. The hatched
area in the graphs depicts the actual values.

Figs. 13a and 13b show the vf statistics of quantity
and count, respectively, and Figs. 13c and 13d show the

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3089225

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON CLOUD COMPUTING 13

6 12 18 24 30
0
5

10
15

500
1000
1500
2000
2500

Number of connections

St
at

is
tic

s 
tra

ns
m

is
si

on
 d

el
ay

 (m
s)

NH+SM

V-Sight

Native

(a) linear (flow entry).

6 12 18 24 30
0
5

10
15

500
1000
1500
2000
2500

Number of connections

St
at

is
tic

s 
tra

ns
m

is
si

on
 d

el
ay

 (m
s)

NH+SM

V-Sight

Native

(b) linear (port).

2 4 8 16 32
0
5

10
15
20

500

1000

1500

2000

Number of connections

St
at

is
tic

s 
tra

ns
m

is
si

on
 d

el
ay

 (m
s)

NH+SM

V-Sight

Native

(c) fat-tree (flow entry).

2 4 8 16 32
0
5

10
15
20

500

1000

1500

2000

Number of connections

St
at

is
tic

s 
tra

ns
m

is
si

on
 d

el
ay

 (m
s)

NH+SM

V-Sight

Native

(d) fat-tree (port).

Fig. 14. Average statistics transmission delay (ms).

vp statistics for RX quantity and TX quantity, respectively.
We omit the graphs for RX and TX counts for vp statistics
because they look similar to the quantity results of the vp
statistics. In short, the vStatistics provided in NH+SM are
aggregated values of tenants that are significantly different
from the actual values. For example, the mean absolute
errors (MAEs) of the flow entry statistics for the count (Fig.
13b) of NH+SM and V-Sight are 612% and 2%, respectively,
and other results show similar tendencies on MAEs. By
using V-Sight, the tenant controllers can receive statistics
very close to the actual values, thus enhancing the accuracy
of the network management and optimization tasks of the
tenant controllers.

4.3 Transmission Delay

Transmission delay is measured on both the linear and fat-
tree topologies. The results are analyzed in regard to two cri-
teria: 1) V-Sight performance improvement—a comparison
between NH+SM and V-Sight, and 2) SDN-NV overheads—
a comparison between Native and V-Sight. To measure
the transmission delay, we modify the ONOS controller to
report the sending time of the statistics request message
and the receiving time of the statistics reply. Except for this
timestamping, the ONOS is not modified in any other way.

Because the PN, network hypervisors, and tenant con-
trollers execute on separate physical servers, we measure
the RTT between two servers. The average and 95% tail RTT
are 0.15 ms and 0.18 ms, respectively, for all pairs of servers.
Further, we confirm that no bottleneck occurs on network
connections between servers.

4.3.1 V-Sight performance improvement
In the linear topology, V-Sight consumes 9.35 and 4.68 ms,
on average, for flow entry and port statistics transmission,
respectively (Figs. 14a and 14b). The delays in V-Sight
improve by 46 times (flow entry statistics, 6 connections)
to 454 times (port statistics, 30 connections) compared with
those in NH+SM. For the fat-tree topology, V-Sight exhibits
9.75 and 7.29 ms of transmission delay for flow entry and
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Fig. 15. Control channel traffic consumption (bytes per second).

port, respectively (Figs. 14c and 14d). The delay in V-Sight
improves by 14 times (port statistics, 2 connections) to 269
times (port statistics, 32 connections).

In detail, the transmission delay in NH+SM increases in
proportion to the number of TCP connections (even by over
2 s) because the number of pStatistics required for vStatistics
increases as the number of connections increases. Subse-
quently, the vStatistics are returned to the tenant controller
only after the corresponding pStatistics are collected. Con-
versely, V-Sight disaggregates the pStatistics transmission
routines from the statistics virtualization, thereby reducing
this delay.

4.3.2 SDN-NV overheads
We compare the transmission delay between V-Sight and
Native to examine the SDN-NV overheads. In the linear
topology, Native exhibits 2.8 and 1.5 ms for flow entry and
port statistics transmission delay, respectively (Figs. 14a and
14b). The delays in V-Sight are 3.4 times higher, on average,
than those of Native. Further, for the fat-tree topology,
Native exhibits 4.6 and 2.37 ms delays for flow entry and
port statistics transmission (Figs. 14c and 14d), respectively.
The results of V-Sight are 1.09 times (flow statistics, 2 con-
nections) to 6.69 times (port statistics, 2 connections) higher
than those of Native.

Although the delays of V-Sight are higher than those of
Native, note that all the values are lower than 20 ms. In
comparison, the default monitoring intervals of the ONOS,
Floodlight, and OpenDayLight are 5, 10, and 15 s, respec-
tively. Therefore, we believe that the transmission delay of
V-Sight, which is 19.36 ms at maximum, is acceptable.

4.4 Control Channel Consumption
Similar to the transmission delay, the control channel con-
sumption for statistics is also evaluated under the linear
and fat-tree topologies. Two criteria are used: V-Sight per-
formance improvement and SDN-NV overheads as in §4.3.

4.4.1 V-Sight performance improvement
Fig. 15 shows the control channel consumption for statistics
transmission in both topologies. The consumption increases
in proportion to the number of connections because the
number of pfs to be monitored increases accordingly. In
the linear topology (Fig. 15a), V-Sight improves the con-
trol channel consumption by approximately 1.9 times on
average. In the fat-tree topology (Fig. 15b), the average con-
sumption of V-Sight is 1.44 times less than that of NH+SM.
This improvement is due to the benefit of the aggregated
pCollector that merges the individual statistics messages
(§3.4).
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Fig. 16. Time skews of pStatistics cache (ms).

4.4.2 SDN-NV overheads
Comparing V-Sight with Native, V-Sight consumes 107%
and 93% of Native’s control channel traffic in the linear
and fat-tree topologies, respectively, which implies that the
consumption of V-Sight is comparable to that of Native.
Furthermore, in the fat-tree topology with few network
connections, V-Sight is even better than Native. This is
because V-Sight only monitors the switches that have the
pStatistics required for vStatistics. The fat-tree topology has
20 switches (Fig. 12b), and multiple paths are available
between every host pair. In this topology, when the number
of connections is small, not all switches are used for packet
forwarding and, consequently, not for vStatistics.

In Native, however, the tenant controller monitors all the
switches in the PN. Therefore, request and reply messages
are generated for all switches regularly. In V-Sight, trans-
mission disaggregation controls the creation of pCollectors
toward the required pfs. Thus, pCollectors are created only
for the required pfs, and the statistics request/reply mes-
sages are not created for switches that are not used.

4.5 Time Skew of pStatistics Cache

The experiment results of previous sections (§4.3 and §4.4)
show that V-Sight successfully improves the transmission
delay and control channel consumption. The improvements
come with a time skew, which is the interval between
the times when a vStatistics request arrives and when the
pStatistics required for the vStatistics request are stored in
the cache. When this timing in pStatistics cache becomes
longer, the pStatistics required for the vStatistics are col-
lected from the PN much in advance; thus, the calculated
vStatistics could be out-of-date.

Fig. 16 shows the time skews for the number of network
connections in the linear and fat-tree topologies, plotted
with average and 95% confidence intervals. The results
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Fig. 17. CPU cycle usage (%).

indicate that the average time skews in all cases of network
connections are equal to or less than 2500 ms in both topolo-
gies. This implies that V-Sight replies to the tenant controller
within 2.5 s, which is half of the request interval of the tenant
controllers. Consequently, the tenant controller, at least, does
not receive statistics from the previous statistics request;
therefore, the accuracy overhead does not jeopardize the
accuracy of vStatistics itself.

4.6 CPU and Memory Usage

V-Sight inevitably incurs additional computational resource
consumption, especially CPU and memory resources in the
network hypervisor (e.g., pStatistics cache and pCollectors).
The CPU and memory usage are measured with similar
settings for the transmission delay and control channel
consumption evaluations. We compare the results of NH
and V-Sight.

4.6.1 CPU usage
Fig. 17 shows the average CPU cycle usage of NH and V-
Sight during the evaluation based on the network topology
and number of connections. Regardless of the topologies
(Figs. 17a and 17b), the CPU cycles are proportional to the
number of connections for both NH and V-Sight. Compar-
ing the two, V-Sight is expected to use more CPU cycles
than NH because V-Sight runs additional threads, such as
pCollectors. However, surprisingly, V-Sight consumes, on
average, 0.6% and 0.9% fewer CPU cycles than NH in the
linear and fat-tree topologies, respectively.

The reason for the CPU usage results is because V-
Sight prevents the unnecessary operations of tenant con-
trollers. Specifically, we find that the tenant controller in
the experiments periodically collects flow entry and port
statistics to confirm whether the network policies, such as
the installed flow entries or the configured settings on the
network devices, are consistent between the controller and
the network.

However, NH, without a network monitoring scheme,
does not reply to such statistics requests (i.e., mostly an-
swering that there is nothing in the switches). Thus, the
tenant controller considers this situation as inconsistent. The
controller then removes or re-installs the flow entries, which
leads to the repeated installation of flow entries already
existing in the PN. Thus, NH repeatedly processes the re-
installation messages from the tenant controllers. On the
other hand, V-Sight eliminates these repetitions because it
provides accurate and timely statistics to tenant controllers.
For this reason, even if V-Sight adds additional design and
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Fig. 18. Memory consumption (MB).
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Fig. 19. Effects of V-Sight on tenants.

implementation overheads to the NH, the CPU cycle is
improved.

4.6.2 Memory usage
Fig. 18 depicts the memory consumption of V-Sight and NH.
In the results, two cases exhibit memory consumption of
between 130 and 150 MB for both topologies. On average,
V-Sight consumes 0.99 and 6.06 MB more memory than
NH in the linear and fat-tree topologies, respectively. This
consumption comes from the additional structures in V-
Sight such as the pStatistics cache.

However, at some points (e.g., 18 and 30 connections
in the linear topology), V-Sight consumes lesser memory
than NH. This result also comes from the same reasons why
the CPU consumption is improved (§4.6.1). NH and V-Sight
store the messages from the tenant controllers to distinguish
the flow entries and policies between the tenants for VN
isolation. Therefore, when the messages for setting up flow
entries and policies are generated repeatedly, NH sometimes
consumes more memory than V-Sight.

4.7 Effects of V-Sight on Tenants
We investigate the effects of V-Sight on tenants in practice.
Because network monitoring is used for routing (flow entry
installation), we measure the TCP throughput. In addition,

TABLE 6
Total amount of control channel consumptions of VN controller (KB).

Native NH V-Sight

Flow entry addition 4.10 5510.54 9.43
Flow entry removal 0 23.16 0

the CPU cycles of tenant controllers and control channel
consumption (between tenant controllers and network hy-
pervisor) are measured. The Native, NH, and V-Sight cases
are compared in the linear topology of one tenant having a
single TCP connection.

Fig. 19a shows the TCP throughput in the data plane.
We omit the first 5 s, which is typically the period for
congestion window convergence. First, the results indicate
that the throughput of NH fluctuates more than that of
Native. The 90% tail throughput values of Native, NH, and
V-Sight are 25.9, 18.7, and 25.6 Gbps, respectively. Even
after approximately 250 s, the throughput of NH decreases
to zero, while Native and V-Sight show relatively constant
throughput values throughout the experiment. In addition,
the ranges between the lowest and highest TCP throughput
of V-Sight and Native are 3.5 and 3.2 Gbps, respectively,
while that of NH is 17.6 Gbps, which implies that 1) the
performance of V-Sight is similar to Native and 2) the
improvement in variance over that of NH is about 5.5 times.

The reason for this TCP throughput improvement in V-
Sight is the same as the reason discussed in Section4.6.1.
Because NH does not provide correct statistics to the tenant
controller, the flow entries used for transmitting packets are
re-installed. When they are removed or re-installed in the
middle of packet processing, the TCP throughput shows
high variation and a value of even zero in NH. On the other
hand, V-Sight provides timely and correct statistics similar
to Native, and thus, its TCP throughput also becomes simi-
lar to that of Native.

Next, Fig. 19b shows the cumulative distribution func-
tion of the CPU cycles of the tenant controller. The results
show that the Native and V-Sight cases exhibit similar dis-
tributions. The average CPU cycle consumptions of Native,
NH, and V-Sight are 23.94%, 47.25%, and 22.09%, respec-
tively. V-Sight improves the CPU utilization of the tenant
controller about 2.14 times over that of NH by removing the
flow entry inconsistency situations.

Lastly, Table 6 summarizes the total amount of control
channel consumptions, which are categorized into flow
entry addition and flow entry removal. Figs. 19c and 19d
show the control channel consumptions according to time.
For flow entry addition, NH consumes significantly higher
volumes of control channel traffic, i.e., 1344.03 and 584.36
times over Native and V-Sight, respectively (Table 2), be-
cause of the repetitive flow entry installation, which can
be confirmed from NH’s repetitive spike patterns in Fig.
19c. On the other hand, Native and V-Sight consume control
channel traffic only at the beginning. In terms of flow entry
removal (Table 6 and Fig. 19d), Native and V-Sight do not
consume any traffic, while NH consumes 23.16 KB.

In comparison to Native, V-Sight consumes 2.3 times
more bandwidth for flow entry installation because V-Sight
is a network hypervisor and it inherently has longer control
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channel messages [13], [17]; but, note that the network
hypervisor provides address virtualization and topology
virtualization for isolation between tenants while Native
does not.

5 DISCUSSION

5.1 Consideration of In-band Network Telemetry

Unlike existing monitoring approaches, in-band network
telemetry (INT) provides custom packet-level network mon-
itoring abilities by allowing the collection and reporting
of network states according to user-defined operations in
network switches [47], [48]. For example, a network user
who wants to know certain states inside a network (e.g., the
queue length of each switch) sends an instruction to INT-
capable devices to notify them of the types of states to be
collected. The devices then embed the requested states in
packets, and the hosts can receive the in-network states [49].

However, INT-based monitoring requires INT-capable
hardware devices such as a field programmable gate array
(FPGA) or P4 programmable switch, while V-Sight exists
as a software component that operates on SDN-compatible
switches that are common nowadays. In addition, INT can-
not deliver per-tenant isolated statistics itself. In terms of
NH, existing NHs do not support P4 or FPGA to enable
INT. However, several approaches for making P4 and other
devices on NV exist [50], [51], [52], [53]. So, if INT could be
available on NV, it also could be a part of V-Sight framework
as a means to collect custom network statistics. Then, V-
Sight designs for isolated statistics and resource-efficient
monitoring schemes could work for INT as well.

5.2 Isolated Statistics using P4

Using P4, network operators can implement custom opera-
tions on hardware switches. This could open the possibility
for isolating statistics from the switch-side, not from the
network hypervisor. To enable this, switches should be able
to distinguish which tenant each packet belongs to, for
counting packets per tenants. A challenge is that the method
of classifying tenants at the packet level differs for each
proposed network hypervisor (e.g., VLAN [12], address
rewriting [13], MPLS [18], and TID embedding [44]). We
leave this topic as our future work, which can provide an
accurate and flexible monitoring scheme in SDN-NV.

5.3 Machine Learning for Monitoring on SDN-NV

Recently, various studies attempted to use machine learning
to predict network traffic in the data plane. For example,
various studies [54], [55] used neural networks to predict the
existing network traffic or load on paths for better network
management, such as routing. Currently, V-Sight calculates
vStatistics based on non-isolated pStatistics. If prediction on
the tenant statistics is possible, the accuracy of vStatistics
could be enhanced. Thus, it is an open question of future
research to investigate.

5.4 Integration with Cloud Orchestration Platforms
One of the interesting future research is integrating V-Sight
with cloud orchestration platforms for practically deploying
V-Sight. Several cloud orchestration platforms (e.g., Open-
Stack and Kubernetes) provide plug-in type solutions for
SDN systems [56] to manage the underlying network in-
frastructures and control the network connections between
the containers of cloud infrastructures. Since V-Sight is atop
of SDN-based solutions, it can be readily integrated with
such solutions.

5.5 Consolidated Monitoring Framework for In-network
Computing
Another promising research direction is about building a
consolidated and unified monitoring framework for in-
network computing. For upcoming beyond 5G and 6G
systems, the network resources are expected to perform both
network functions (e.g., packet forwarding) and computing
functions offloaded from hosts [57]. For example, several
studies proposed offloaded training on deep learning mod-
els that accelerates the speeds [58], [59]. In that system, the
monitoring framework should consider both the network
side and the computational resources of the network devices
(such as CPUs, memories, and ASICs). Such consolidated
monitoring can lead to highly optimized decision on net-
work devices (e.g., routing considering both network and
computational resource capacities).

6 CONCLUSION

We present V-Sight, the first comprehensive network moni-
toring framework in SDN-NV. V-Sight makes it possible to
isolate statistics between VNs, reduce statistics transmission
delays, and scale control channel consumption. To this end,
V-Sight introduces statistics virtualization, transmission dis-
aggregation, and pCollector aggregation. We implement
V-Sight and evaluate its key performance characteristics
in terms of statistics virtualization accuracy, transmission
delay, and control channel consumption. Furthermore, we
present the time skew of pStatistics cache, CPU and memory
usage, and effects of V-Sight on tenants, which implies that
V-Sight attains a level comparable to network monitoring in
a non-virtualized SDN.

In future research, we plan to investigate the reliability
and performance of VNs through traffic engineering, work-
ing on the isolated and timely statistics from V-Sight.
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