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Abstract—Performance isolation is an essential property that
network virtualization must provide for clouds. This study
addresses the performance isolation of the control plane in
virtualized software-defined networking (SDN), which we call
control channel isolation. First, we report that the control channel
isolation is seriously broken in the existing network hypervisor
in that the end-to-end control latency grows by up to 15× as the
number of virtual switches increases. This jeopardizes the key
network operations, such as routing, in datacenters. To address
this issue, we take a machine learning approach that learns from
the past control traffic as time-series data. We propose a new
network hypervisor, Meteor, that designs an LSTM autoencoder
to predict the control traffic per virtual switch. Our evaluation
results show that Meteor improves the processing latency per
control message by up to 12.7×. Furthermore, Meteor reduces
the end-to-end control latency by up to 73.7%, which makes it
comparable to the non-virtualized SDN.

Index Terms—SDN, Network virtualization, Control channel,
Isolation, Machine learning, LSTM autoencoder

I. INTRODUCTION

Network virtualization (NV) is essential for delivering iso-
lated network services to users (tenants) in clouds [1]–[4]. In
particular, NV based on software-defined networking, called
SDN-NV, becomes of paramount importance, as it enables
tenants to create their own virtual networks (VNs) on a
physical network. The demand for SDN-NV is continuously
increasing because the customized VN topology by tenants
realizes the network slicing and in-network computing of
upcoming network systems [5]–[9].

In SDN-NV, a tenant uses an SDN controller to manage
the virtual switches (vSwitches) in its VN. A control channel
is logically established between the SDN controller and each
vSwitch. Through the control channel, the tenant conducts
network controls in vSwitches such as packet forwarding rule
setup [10], network monitoring [11], traffic load balancing
[12], and custom in-network operations (e.g., boosting the
deep learning training [13], [14]). Each network control is
achieved through multiple control messages.1 An SDN con-
troller sends the control messages to vSwitches via the network
hypervisor (NH), and the NH translates each control message
from the VN context to the physical network context (message
translation). Then, the messages are delivered to the physical
network to realize the network control. Thus, NH is a key
component of SDN-NV.

1An individual packet of control traffic is referred to as a “control message.”
We use the two terms, control traffic and control message, interchangeably.

Recent research has advanced various aspects of NH—VN
abstractions [15], [16], scalability [17], and visibility [11], but
one remaining issue is “performance isolation.” Each tenant
requires isolation for its VN to obtain the desired performance
in the presence of the other VNs [18], [19]. This is an essential
property that NV must provide [20], [21]. As the SDN-NV
consists of two layers (i.e., the data and control planes),
the isolation is twofold: 1) bandwidth isolation for the data
plane and 2) control channel isolation for the control plane.
Bandwidth isolation prevents the negative effects on traffic
performance (e.g., TCP traffic throughput) caused by the traffic
of other tenants. Control channel isolation is to preserve the
control traffic performance of each vSwitch, such as message
translation latency, even when the control channels increase.
Bandwidth isolation is addressed in [19], but to our knowledge,
control channel isolation has not been investigated (§VI).

Control channel isolation is a critical challenge in SDN-
NV because SDN-NV hosts multiple tenants, and the number
of vSwitches (so the number of control channels) inevitably
increases. To quantify the control channel isolation, we evalu-
ate an up-to-date open-source NH [5] by varying the number
of vSwitches from 8 to 128. This increase of vSwitches is
similar to the increase in the number of tenants with respect
to the control channel isolation (e.g., when each tenant has
8 vSwitches, the increase in vSwitches from 8 to 128 corre-
sponds to tenants from 1 to 16). We measure the latency for
each control message, called the message translation latency
(MTL). The MTL is measured as the time elapsed from when
a control message arrives in the NH to when the message is
sent to the physical network, so it covers the control message
processing within the NH. In our experiments, when a tenant
performs packet forwarding for a new network connection
(forwarding setup), the MTL increases by up to 11.7× as the
number of vSwitches increases. These results demonstrate that
the control channel isolation is broken seriously.

When control channel isolation is broken, many critical
problems arise. One problem is that the MTL contributes to
a significant increase in the end-to-end latency of network
control (NCL). NCL is the entire time to achieve the network
control, which includes the processing of multiple control
messages (i.e., the elapsed time from the first control message
generated by an SDN controller to the last control message
delivered to the physical network). In our experiments, the
NCL for forwarding setup increases by up to 12× as the
number of vSwitches increases from 8 to 128. Such a signifi-
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cant NCL hinders service quality greatly in clouds [22]–[24].
As for network monitoring, we find that NCL increases by
up to 15×, which causes critical network management tasks
(such as routing, firewall, and traffic load-balancing) to work
incorrectly [25]. The results show that the lack of control
channel isolation hampers SDN-NV’s practicability.

Several studies exist for reducing NCL. In non-virtualized
SDNs, existing studies have focused on the physical network
or SDN controller side, which can be categorized into two
approaches: 1) compressing or aggregating the control traffic
[10], [26]–[29] and 2) parallel processing of the control traffic
using multi-threads [30]. These approaches are used to reduce
the control traffic amount for physical switches or improve
controller performance. However, they do not address the
control traffic interference between tenants, which breaks the
control channel isolation of NH. Therefore, they cannot solve
the control channel isolation problem in SDN-NV.

This study presents Meteor, a new NH that offers control
channel isolation. The central idea of Meteor is to calculate
and enforce a message translation quota, γ, for a vSwitch.
The γ is the amount of control traffic per vSwitch that NH
can translate per second. Meteor calculates a distinct γ per
vSwitch. The most straightforward method for calculating γ
is fair share, which is to evenly divide the maximum amount
of control traffic that NH can translate per second. However,
we find that fair share is very problematic because each
vSwitch receives a highly varying amount of control traffic
depending on its location in the VN topology or the amount
of data plane traffic that the switch handles. Our experiment
shows that control traffic varies depending on vSwitches up to
5.3× (§II-C2). As the control traffic greatly differs between
vSwitches, we find that fair share is not a proper choice.

Our approach in Meteor is to learn the behavior of the
control traffic and predict the future control traffic that each
vSwitch would receive. We observe that control traffic has
a strong relationship between past and future data. So, we
treat the control traffic as time-series data, a sequence of
control traffic amounts received per second. Meteor designs
a machine learning (ML) model from this data for prediction.
Because there are quite a few ML models, in order to find a
suitable one, we carefully evaluate five candidate models and
eventually select the LSTM autoencoder (§III-A).

Meteor takes the following inputs: 1) past control traffic
to a vSwitch, 2) control message types, and 3) the data plane
information for the vSwitch. The LSTM autoencoder is trained
with the inputs. The trained model enables Meteor to predict
the future control traffic of the vSwitch and so to calculate γ.
Meteor enforces each control channel with γ, which isolates
the control channels (§III-C). We implement Meteor based on
PyTorch along with an open-source NH [5]. Meteor achieves
the following contributions:

• MTL improves by up to 12.7×.
• NCLs for the forwarding setup and network monitoring

improve by up to 3.5× and 3.8×, respectively, which is
comparable to those of non-virtualized SDN.
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➁ translate control messages
➂ deliver the virtualized control message
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Fig. 1: Network control workflow in SDN-NV. Details in §II-A

• Meteor exhibits reasonable overheads—0.4% and 12%
increase in memory and CPU cycles, respectively.

• Our design of LSTM autoencoder outperforms other ML
models for prediction accuracy by up to 2.2× and is also
applicable to complex network topologies.

II. BACKGROUND AND MOTIVATION

A. SDN-NV

Fig. 1 shows the network control workflow in SDN-NV
that sends control traffic (control messages) to a vSwitch. The
NH abstracts the physical network (e.g., physical switches and
links) and provides a custom VN for each tenant. The SDN
controller of a tenant then conducts network controls over
the VN. For example, forwarding setup is done with control
messages installing a flow rule for every vSwitch that forwards
packets. Control messages arrive at the NH (➀ in Fig. 1).
Then, the NH performs the appropriate translations according
to the control message type (➁). For example, when the
type is new flow rule installation, the NH performs topology
translation [16], [20] that converts the addresses of vSwitches
into the addresses of the physical switches [20]. In addition to
topology translation, there are various translations (e.g., host
address [16], flow rule [15], and statistics [11]). Note that these
message translations are essential to enable network controls
of tenants in SDN-NV [5], [15], [16], [20]. Afterward, the
control message is delivered to the proper physical switch (➂).

So, each control message goes through three steps: 1)
transmission of the message from the SDN controller to the
NH, 2) message translation in the NH, and 3) transmission of
the control message from the NH to the physical switch. We
denote the latency for each step as lV , MTL, and lP where
MTL is the latency overhead generated purely by the NH in
SDN-NV. We measure these latencies later (§II-D1).

B. Experiment Setup

We explain the experiment setup used in this study. Our
testbed consists of three physical machines equipped with Intel
Xeon E5-2600 CPUs and 64 GB memory. The three servers
are connected by a 10 Gb Ethernet. We run physical network,
NH, and SDN controllers on each of the three servers. The
physical network is emulated by Open vSwitch and Mininet
[31], and it is of a linear topology with 128 physical switches.
For the NH, we run Libera [5], a recent open-source NH, to
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Fig. 2: Control traffic throughput of a vSwitch (bytes/s).
Details in §II-C1

1 2 3 4 5 6 7 8
0

2

4

6

40

80

vSwitch

D
iff

er
en

ce
ra

tio
in

co
nt

ro
lt

ra
ffi

c
th

ro
ug

hp
ut

Fig. 3: Difference ratio in control traffic throughput. Details
in §II-C2

evaluate the existing SDN-NV. The NH creates a VN with a
linear topology, and the number of vSwitches in the VN varies
in the range of 8, 16, 32, 64, and 128. Also, the number of
hosts in the VN is set to two.

For the SDN controller, we use ONOS, which is widely
used in real-world scenarios (e.g., AT&T and COMCAST
[32]). The SDN controller performs various network controls,
such as topology discovery, forwarding setup, and network
monitoring. Topology discovery and network monitoring oc-
cur periodically, while forwarding setup occurs when new
connections (e.g., TCP) are generated. We focus on the two
network controls: 1) forwarding setup and 2) network moni-
toring because these two network controls are representative
metrics in evaluating control channel performance in SDN
[10], [11], [25]. Also, these are the network controls that
most SDN controllers (e.g., ONOS, OpenDaylight, Floodlight,
POX, and Ryu) provide by default. For the testbed, we
create a single TCP connection between the two hosts. We
employ this experiment setup throughout this paper. We also
perform experiments on different topology, the higher number
of tenants, and different SDN controller as necessary. The
specific differences in experiments are individually described.

C. Control Traffic Characteristics

1) Burst control traffic: To investigate the control traffic
characteristics, we experiment with a VN of 8 vSwitches and
measure the control traffic throughput of each vSwitch. Fig.
2 shows the control traffic of forwarding setup and network
monitoring for a vSwitch over time. It presents the snapshot of
the first 40 s of the 120 s measurements because the remaining
80 s shows similar results. Fig. 2a is for the forwarding
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Fig. 4: Total latency per control message and MTL. Details in
§II-D1.

setup, and we observe that the control traffic throughput shows
burstiness (× marks). Fig. 2b also exhibits burstiness for net-
work monitoring (◦ marks). We experiment with other network
controls and observe similar patterns. In other words, the SDN
controller generates control traffic in bursts. This burstiness is
observed in all vSwitches. Then, when the burstly received
messages are translated in the NH, NCL gets increased highly
which breaks control channel isolation.

2) Different amount of control traffic per vSwitch: Next, we
check the control traffic generated for each vSwitch. We show
the control traffic throughput difference between vSwitches by
calculating the difference ratio. Fig. 3 shows the difference
ratio per vSwitch. The difference ratio 1 means that the
vSwitch has received the minimum control traffic between the
vSwitches at a second. Also, the difference ratio 4 indicates
that the vSwitch has received 4× higher control traffic than
the minimum amount that the other vSwitches have received
at a second. The x-axis represents the individual vSwitches
(i.e., 1 to 8). The bars are the mean values, and the whiskers
show the ranges.

The vSwitches show an average difference ratio between
1.1× (vSwitch 4 in Fig. 3) and 5.3× (vSwitch 3). In addition,
the peak difference ratio reaches up to 64.7× (vSwitch 6). In
other words, the control traffic by an SDN controller differs
greatly per vSwitch. This is a characteristic of SDN controllers
that generate control traffic for each vSwitch depending on
the network control [33]–[35]. Such observations necessitate
control channel isolation per vSwitch.

D. Control Channel Isolation Problem in SDN-NV

To show the control channel isolation problem in SDN-
NV, we measure MTL and NCL by changing the number of
vSwitches in a VN between 8, 16, 32, 64, and 128.

1) MTL: We measure three latencies of the network control
workflow in SDN-NV—lV , MTL, and lP . We measure the
latencies for two network controls, forwarding setup and
network monitoring. The control messages for the forwarding
setup are created as many as the number of vSwitches in a
VN in order to install flow rules. Also, the network monitoring
generates control messages for statistics requests as the num-
ber of vSwitches in a VN. We denote the sum of the three
latencies as “total latency,” and the total latency is for each
control message. Thus, it is different from NCL.



0 50 100 150
0

500
1000
1500
2000
2500

Number of vSwitchesFo
rw

ar
di

ng
 s

et
up

 (m
s) Linear

4-ary 
fat-tree

(a) Forwarding setup.

0 50 100 150
0

100
200
300
400
500

Number of vSwitchesN
et

w
or

k 
m

on
ito

rin
g 

(m
s)

Linear
4-ary 
fat-tree

(b) Network monitoring.

Fig. 5: NCL. Details in §II-D2.

Fig. 4 shows the 99% tail of total latencies that clearly
reveals the impact of the control channel isolation.2 The bars
in Fig. 4a represent the total latency of the forwarding setup
message for a given number of vSwitches (x-axis). Each bar
consists of lV , MTL, and lP (e.g., the white portion of each
bar is the MTL). In the results, the total latency increases by
up to 10.5× as the number of vSwitches increases from 8 to
128. Also, MTL (the white portion of each bar) accounts for
93.3% on average of the total latency, indicating that MTL
has the highest impact on total latency. Also, MTL increases
by up to 11.7× as the number of vSwitches increases from 8
to 128. On the other hand, lV and lP show average latencies
of 6.3 ms and 6.4 ms, respectively, without the proportional
increase to the number of vSwitches.

Fig. 4b is for network monitoring. The total latency in-
creases by up to 8.6× as the number of vSwitches increases.
The MTL also increases by up to 10.1×. Both lV and lP show
average latencies of 12.7 ms, without the proportional increase
to the number of vSwitches. During the experiments (Figs. 4a
and 4b), there is no saturation of computing resources, such
as CPU, when the vSwitches increase. So, the growth of total
latency of a control message only comes from MTL, and it is
the main cause that breaks the control channel isolation.

2) NCL: We further investigate the impact of the control
channel isolation problem by measuring NCLs for two net-
work controls. The NCL for forwarding setup is the time
elapsed from when the first flow rule installation message is
generated from an SDN controller to when the last message
is delivered to the physical network. Also, NCL for network
monitoring is the time elapsed between the statistics requests
sent to all the vSwitches and the corresponding replies. Note
that the NCL is not just the sum of the total latencies because
the SDN controller generates control messages in parallel, and
NH also translates the messages in parallel.

We first explain the linear topology results when vSwitches
increase from 8 to 128. The results are shown with the line of
circle marks in Fig. 5. Fig. 5a shows the NCL for forwarding
setup. When the number of vSwitches increases from 8 to
128, NCL increases by up to 12×. Fig. 5b shows the NCL for
network monitoring, wherein NCL increases by up to 15×.

2We also have checked other percentile values (e.g., 50% median), and the
median latencies show similar tendencies to the tail latency.
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Fig. 6: Architecture and workflow of Meteor. Details in §III.

Next, we additionally measure the NCL3 on a 4-ary fat-tree
topology, which is a realistic topology in datacenters. Com-
pared with the linear topology wherein each switch connects
to one or two links, switches in a fat-tree are connected by four
links, which is much more complex. The number of physical
switches of a 4-ary fat-tree is set to 20. We set the VN topology
identical to the physical network; so the number of vSwitches
of a VN is also 20. Then, to increase the number of vSwitches,
we increase the number of VNs (tenants) from one to six,
so the vSwitches increase from 20 to 120. In short, fat-tree
topology experiments show NCLs on complex topology with
multiple VNs in comparison to the linear.

The lines with × marks in Fig. 5 present the fat-tree
topology results. The NCLs of the forwarding setup (Fig. 5a)
and network monitoring (Fig. 5b) show quite similar trends
and results to those of linear topology, although the fat-tree is
complex and involves more VNs (up to 6). The results show
that the NCLs and their control channel isolation are related to
the number of vSwitches, rather than the topology complexity
or the number of VNs.

III. Meteor DESIGN

Meteor consists of three components: Meteor predictor,
traffic meter, and switch tap, as shown in Fig. 6. This section
explains the Meteor predictor that is an ML model trained
offline, followed by the traffic meter that collects input values
(features) for the Meteor predictor. Then, the switch tap is
described, which exists for each vSwitch. To give a big picture,
we first outline how Meteor components interact as follows.

The traffic meter collects the control traffic and VN topology
information within a specific time interval (we call “window”)
(➊ in Fig. 6). Then, the traffic meter passes them as the input
features to the Meteor predictor and generates the prediction
result for each vSwitch (➋). The prediction result is delivered
to the corresponding switch tap. The switch tap calculates the
quota γ per vSwitch based on the predicted result (➌). In
addition, the switch tap performs message translations while
maintaining γ (➍). Note that ➋ and ➌ are repeated at every
window. Also, ➊ works periodically (e.g., 100 ms) to collect
the features within a window.

3We also have measured MTLs on the 4-ary fat-tree topology, but omit the
results as they are quite similar to those of linear topology (Fig. 4).
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A. Meteor Predictor

The Meteor predictor is designed to predict the time-series
of the control traffic throughput. An important design question
is which ML model is suitable for Meteor. To answer this
question, we begin by analyzing the relationship between past
and future control traffic. We then describe the structure of the
Meteor predictor. Finally, we determine the input and output
features.

1) Correlation between past and future control traffic: To
check the correlation, we use the autocorrelation coefficient
that shows the degree of correlation between the data point at
the current time with past data points. To collect data, we use
the experiment setup in §II-B. We create one VN with varying
the number of vSwitches ranging from 1 to 128 and measure
the control traffic throughput per second of each vSwitch over
120 s. This experiment is repeated 250 times.

We obtain the 120 autocorrelation coefficients from the past
data (e.g., between the most recent one and the past 1 to 120 s).
The autocorrelation coefficients are calculated as in [36]. Fig.
7 shows the average autocorrelation coefficients which shows
the first 30 s because the coefficients from 31 to 120 s are
lower than those of the first 30 s. The x-axis represents the past
time relative to the current time, whereby the autocorrelation
coefficient is represented as the bar (y-axis). For example, a
bar at the 5 s shows the autocorrelation coefficient between
the control traffic throughput of the current time (0 s) and of 5
s past. In addition, the region of 95% confidence intervals4 is
shown in white, and the range of higher confidence intervals
in gray. Note that if a bar is located in the gray region, the
past time of the bar has a strong correlation with the future
[36]. In the results, the bars ranging from 1 to 5 s in the
past are located in the gray range; thus, the control channel
throughput of the past 5 s has a strong correlation with the
current control traffic. This implies that it is possible to predict
the future control traffic using the past 5 s with good accuracy.

Since the control traffic consists of time-series data, our
insight is to use an ML model that utilizes the correlation.
To choose the appropriate ML model for the control traf-
fic, we investigate five models that can train on time-series
data: 1) ARIMA [37], 2) RNN autoencoder [38], 3) LSTM
autoencoder [39], 4) GRU autoencoder [40], and 5) attention-

4Note that 95% confidence interval is a de-facto criterion for considering
relationships of time-series data [36].

based autoencoder [41]. ARIMA is a traditional modeling
method for time-series data. The autoencoder models (four
of them) accumulate the past information in so-called “cells.”
We run separate experiments to choose one out of five models.
The results show that the LSTM autoencoder has the best
prediction accuracy (see the details in §IV-A1). Thus, we
choose the LSTM autoencoder for the Meteor predictor.

2) Model structure: The LSTM autoencoder takes the past
data and predicts future data. We denote the features of an
i-th window as Xi = {xi

k|k = 1, 2, ..., n}. Each xi
k of Xi

represents the k-th measured features during the i-th window.
We design the Meteor predictor to take features of the previous
window and to predict the features of the subsequent window.
So, the length of the past and future data becomes the window
size (e.g., 2 s). The detailed features we select are explained
later. Also, n (the number of features in Xi) is determined
based on the window size and the measurement interval of
the features, which will be also explained later.

Fig. 8 illustrates the structure of the Meteor predictor that
consists of the encoder layer and decoder layer. The encoder
layer (denoted as Enc) compresses the features of the previous
window (Xi in Fig. 8) of the control traffic into a vector of
fixed dimensionality, called encoded state (Ei) as follows. The
creation of Ei is based on the n numbers of LSTM cells in the
Enc. Each LSTM cell is designed to learn time-series patterns
of Xi. The k-th LSTM cell produces two values: 1) cell state
(cik) and 2) hidden state (hi

k). The first value, cik, delivers the
part of accumulated features (i.e., xi

1 to xi
k), which takes into

account n number of LSTM cells (called long-term memory).
Also, hi

k represents the compressed features of xi
k at a specific

LSTM cell (short-term memory).
Specifically, the first LSTM cell takes xi

1, the first measured
features during the window. Then, the cell generates ci1 and
hi
1. Please refer to [42] for the detailed operations of LSTM

cells. The generated ci1 and hi
1 are fed to the next LSTM cell.

From the second LSTM cell, each LSTM cell (such as k-
th) takes three values as its inputs: xi

k, cik−1 and hi
k−1. Each

LSTM cell sequentially produces cik and hi
k. Finally, hi

n, which
is generated by the last LSTM cell (n-th cell), becomes Ei.
This process is formulated as Equation 1.

Ei = Enc(xi
k, c

i
k−1, h

i
k−1), k = 2, 3, ..., n (1)

The decoder layer (Dec) in Fig. 8 predicts the features of the
subsequent window (Xi+1) as follows. The first LSTM cell of



Dec receives the Ei (final hidden state from Enc) and the last
xi
n of input Xi (previous input). Then, the cell generates a new

updated hidden state (hi+1
1 ) from them. Afterward, the cell

delivers the hi+1
1 to the activation function, φ. On receiving the

hi+1
1 , φ performs prediction to generate xi+1

1 . This prediction
is formulated as Equations 2 and 3 and repeated for the n
numbers of LSTM cells in Dec. Specifically, the m-th LSTM
cell receives the hidden state (hi+1

m−1) and the predicted value
(xi+1

m−1) from the previous cell. Then, the m-th LSTM cell
predicts xi+1

m . At the end of the last LSTM cell (i.e., n-th),
the prediction is generated by collecting xi+1

m from each cell.

hi+1
k = Dec(xi+1

k−1, c
i+1
k−1, h

i+1
k−1), k = 2, 3, ..., n (2)

xi+1
k = φ(hi+1

k ), k = 1, 2, 3, ..., n (3)

3) Features: Here, we explain the features (xi
k) used in the

Meteor predictor. Note that the input and output features are
identical in LSTM autoencoder (§III-A2). Because the Meteor
predictor is to predict control traffic throughput, we include
the control traffic throughput (tik) as input feature in xi

k. In
addition to tik, we consider control message type and data
plane as features since they are known to affect tik [33]–[35].

Control message includes several message types: new traffic
arrival (f i

k), flow rule installation (rik), network monitoring
(sik), connection establishment (hello), synchronization (bar-
rier), error reporting (error), and device configuration (config)
messages. Among the message types, we investigate which one
helps improve prediction accuracy by checking the correlation
between tik and each message type. We calculate the Pearson
R that shows the correlation between two variables [43]. When
two variables have a high correlation, the absolute value of the
Pearson R approaches 1. Fig. 9 shows seven message types
and their Pearson R values. Each bar is the Pearson R value
between tik and the number of messages per type (x-axis).
Three features—f i

k, rik, and sik—show notably higher Pearson
R values than the others (3.1× higher than those of the others,
on average). Thus, we add f i

k, rik, and sik to the input features
(xi

k = {tik, f i
k, r

i
k, s

i
k}).

Second, we include features that represent the data plane. It
is known that the data plane (e.g., number of flows, switches,
hosts, or ports) impacts the control traffic throughput [33]–
[35]. So, we include data plane information related to each
vSwitch—the number of hosts attached to the vSwitch (dik)
and the number of active links of the vSwitch (aik). Note that
we exclude features that are indirectly obtained by features
of message types—for example, the number of flows can be
derived by f i

k. Finally, we define six input features for the
Meteor predictor (xi

k = {tik, f i
k, r

i
k, s

i
k, d

i
k, a

i
k}).

4) Training: The Meteor predictor requires a dataset for
training. However, to the best of our knowledge, there are no
such datasets for SDN systems [44]. Especially, no datasets
exist for control traffic in the context of SDN-NV systems.
Thus, we generate a dataset to train the Meteor predictor. Our
dataset is created using the experiment setup of linear topology
in §II-B. We randomly select the number of vSwitches from 1
to 128 vSwitches. Note that control channel isolation is highly

TABLE I: Representative hyperparameters. Details in §III-A4.

Hyperparameter Random search range Best value
# of Enc and Dnc layers 1–3 2

Hidden state size 16, 32, 64, 128 64
Activation function Linear, ReLU, leaky ReLU Linear

Optimizer ADAM, SGD ADAM
Batch size 120, 240, 360, 720, 840 720

Learning rate 0.001, 0.003, 0.01, 0.03 0.01
Epoch 100, 200, 400, 1000 200

related to the number of vSwitches regardless of the network
topology types (§II-D2); so, we choose the linear topology to
reduce the dataset generation complexity. Moreover, we reveal
that the Meteor predictor trained by the linear topology dataset
provides control channel isolation in an even more complex
topology (§IV-C).

In addition, for the dataset, the TCP connection between
the hosts is generated randomly, which is to simulate the
user connections of real systems (e.g., datacenters). The input
features are measured every 100 ms. We choose the mea-
surement interval, 100 ms, empirically after numerous internal
experiments. We have tested other intervals, but if the intervals
become shorter than 100 ms, the NH becomes overloaded
and cannot generate the dataset stably. Our SDN controller,
ONOS, executes various network controls, such as host loca-
tion discovery, network topology discovery, forwarding setup,
cost-based routing, network monitoring, and switch liveness
checking. So, our dataset captures the full spectrum of the
network controls.

For the training, we select the hyperparameters of the Me-
teor predictor. We obtain Table I through random searches of
200 trials to determine the best values for the hyperparameters.
For the Enc and Dec layers, we stack two layers and set
the hidden state size as 64. For the activation function (φ)
in Equation 3, we use the linear function [45] to infer the
output feature from the last hidden state after we tested other
activation functions, such as ReLU and Leaky ReLU. For
the optimizer, we test stochastic gradient descent (SGD) and
ADAM and choose the ADAM optimizer [46] with a batch
size of 720. The learning rate and epoch [47] are configured
as 0.01 and 200, respectively.

Lastly, “window size” should be determined. The window
size decides the prediction interval of Meteor. For example, a
window size of 5 s means that the features (Xi) are collected
for 5 s, so the prediction is also performed at 5 s. Considering
the relationships between the past and future control traffic
throughput (Fig. 7), we test the possible window size up to 5
s. Through empirical experiments, we observe that the smaller
the window size, the higher the prediction accuracy becomes.
However, the NCL improves best when the window size is
2 s due to the operation overheads (§IV-A2). Thus, we set
the window size to 2 s. Now the window size is 2 s and, the
measurement interval is 100 ms; so, n, the number of elements
in Xi, is 20 as 2 s divided by 100 ms.
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B. Traffic Meter

The traffic meter is responsible for two roles—1) measuring
and collecting features (➊ in Fig. 6) and 2) requesting and
obtaining the prediction results (➋). The traffic meter works
in parallel for vSwitches. First, the traffic meter measures
the input features of the current window every 100 ms and
collects them during the window (2 s) as Xi. The traffic meter
feeds Xi to the Meteor predictor and receives the prediction
result (Xi+1). Finally, the traffic meter takes the control traffic
throughput (ti+1

1 to ti+1
20 ) from the predicted Xi+1 and delivers

it to the switch tap.

C. Switch Tap

The switch tap exists per vSwitch and manages the message
translation for the vSwitch. It performs two operations: 1) γ
calculation (➌ in Fig. 6) and 2) γ enforcement (➍).

1) γ calculation: When the switch tap receives the pre-
dicted control traffic throughput for the subsequent window
(ti+1
1 to ti+1

20 ), it calculates γ as in the following example. Let
the graph in Fig. 10 be Pi(t) that is a function of the predicted
control traffic throughput over time. Suppose that the dotted
line in Fig. 10 (4000 bytes/s) represents γ. The time wi is
the start time of the i-th window. Also, the region “H” (i.e.,
H1 and H2) indicates the time periods when the control traffic
throughput is higher than γ, and “L” (i.e., L1 and L2) for lower
throughput. For the time period of H1 (wi to x1 in the x-axis of
the graph), the switch tap stores the excess control traffic in its
buffer. Then, from x1 to x2 (L1 region), where its throughput
is less than γ, the switch tap processes the buffered traffic.
Similarly, the excess traffic buffered during H2 gets translated
during L2.

If H regions are bigger than L regions, the buffered traffic is
not translated during x1 to x2 and x3 to wi+1. The remainder
“H–L” will be processed after wi+1, which delays the message
translation. The opposite case is when L is bigger than H,
meaning that γ is over-reserved for the vSwitch. Based on
these observations, we derive the most effective γi (γ of the i-
th window) when H = L. So, the switch tap calculates γ using
Equation 4 where |W | is the window size. In this way, message
translation is performed with γi during the i-th window, even
when the control traffic generation exhibits burstiness. This

contributes to enhancing the control channel isolation.∫ wi+1

wi

Pi(t) dt = |W | × γi (4)

2) γ enforcement: Now with γi, Meteor enforces it as
follows. The switch tap does bookkeeping whenever it trans-
lates messages and calculates the average amount of translated
control traffic per second (mtr). For new control messages, it
checks whether the mtr exceeds γi. If yes, the switch tap stops
the message translation. If not, it performs message translation.
While the message translation is stopped, the mtr decreases.
Also, if there is any untranslated control traffic when the
message translation is stopped, the untranslated traffic is stored
in the buffer of the switch tap (§III-C1). Afterward, when
the mtr goes below γi, the switch tap resumes the message
translation. The switch tap then translates the buffered traffic
and the newly arriving traffic.

A remaining question is how often the switch tap checks
whether the mtr exceeds γi. If the checking interval is short,
the switch tap can stop and resume message translations fre-
quently, so the γ enforcement can be more accurate. However,
short intervals can result in high overheads to Meteor (e.g.,
CPU utilization). Through experiments, we empirically find
that 100 ms is appropriate for Meteor.

IV. IMPLEMENTATION AND EVALUATION

We implement the traffic meter and switch tap within Lib-
era, an up-to-date open-source NH (3.2K LoC). For the Meteor
predictor, we use PyTorch v1.10.1 to implement the LSTM
autoencoder (0.7K LoC). The Meteor predictor is trained
by a dataset of 360K records. We empirically observe that
the dataset of 360K records achieves a reasonable prediction
accuracy to be shown in §IV-A1. Also, we train the Meteor
predictor offline because the offline trained model predicts well
even when the control traffic and topology are not observed
in the training dataset (§IV-C). The model takes 4.5 hours for
its training. Our implementation and execution instructions are
accessible on [48].

With the implementation, this section evaluates Meteor. All
experiments are conducted with the experiment setup in §II-B.
Note that an NVIDIA RTX 2080 Ti GPU is additionally
used to train the Meteor predictor. We conduct four sets
of experiments. The first set is to evaluate how accurate
the Meteor predictor is. The second set is to evaluate how
effectively Meteor isolates the control channels. The third set
evaluates whether Meteor can be generalizable to predict the
control traffic of different topologies and multiple tenants. The
fourth set is to evaluate the overheads of Meteor. Each set is
explained in its corresponding subsection. All experiments last
for two minutes and are repeated five times.

A. Prediction Accuracy

Here, we evaluate the prediction accuracy of the Meteor
predictor in two directions: 1) model structure design and 2)
window size. First, regarding the model structure, we compare
the Meteor predictor with other ML models by measuring
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the prediction accuracy for future control traffic throughput.
The accuracy is calculated as the root mean squared error
(RMSE), which is commonly used to evaluate the prediction
accuracy of time-series data [37]. We measure the accuracy
with a new dataset containing 10K records, not used to train
the Meteor predictor. Second, for the window size, we validate
the decision rationale of 2 s window in Meteor in terms of the
prediction accuracy and NCL.

1) Model accuracy: Fig. 11 shows the prediction error
(RMSE) of the Meteor predictor with the other models. We
first compare the Meteor predictor (the first bar in Fig. 11)
to four other ML models (i.e., attention autoencoder (AE),
ARIMA, GRU AE, and RNN AE). All the models in Fig. 11
are trained by the same dataset and identical input features
(i.e., tik, f i

k, rik, sik, dik, and aik). The hyperparameters of the
models are found in the same manner as in §III-A4. The results
in Fig. 11 shows that the Meteor predictor outperforms the
other models by 1.3×, 2.2×, 1.8×, and 2× better accuracy.

In addition, we check the effect of input features by com-
paring when only tik is used as features (the last bar in Fig.
11) and when all features (i.e., tik, f i

k, rik, sik, dik, and aik) are
used. The first bar represents the prediction error of Meteor
with the six input features. In the results, the first bar exhibits
2.6× better prediction accuracy than the last bar. The results
validate our selection of input features.

2) Effect of window size: We vary the window size from
1 s to 5 s. Over the window size, we measure the prediction
accuracy of the Meteor predictor and the NCL. The NCL is
measured on a VN of 64 vSwitches (linear topology) with the
network control of forwarding setup. The results are in Fig. 12
where the prediction accuracy is shown with bars, and NCL
is shown by a dotted line. In terms of prediction accuracy, the
shortest window size (1 s) demonstrates the best prediction—
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Fig. 13: MTL comparison. Details in §IV-B1.
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Fig. 14: NCL comparison. Details in §IV-B2.

the RMSE becomes 6× better (smaller) than when the window
size is 5 s. The prediction errors increase gradually from 1 s to
4 s and then increase rapidly when the window size becomes
5 s by 2.1×.

However, the NCL for forwarding setup shows different
results. From window sizes of 2 s to 5 s, the NCL increases as
the window size (up to 13.9×). Surprisingly, NCL is smallest
with 2 s, and, when the window size changes to 1 s, the
NCL rather increases by 6.2×. We find that this is due to
the overhead of Meteor. Meteor predicts the control traffic and
calculates γ per window for every vSwitch; thus, if the window
size is too small, the Meteor operations (Fig. 6) are executed
too often, becoming a bottleneck. Thus, we choose 2 s as
the optimal window size that balances the prediction accuracy
and NCL. We run more experiments with a larger number of
vSwitches and NCL for other network controls (e.g., network
monitoring) and find that the results have a similar tendency.

B. Control Channel Isolation

Here, we evaluate the improvement in control channel iso-
lation when the number of vSwitches increases from 8 to 128.
Two metrics are used—MTL and NCL—for forwarding setup
and network monitoring. We compare Meteor with two other
NHs: Libera [5] and Libera-RC. Libera does not offer control
channel isolation, so we implement Libera-RC that calculates
γ based on reactive control [49], [50], which does not use
any predictions. Specifically, Libera-RC works as follows. At
first, each vSwitch has identical γ as its initial value. Then,
Libera-RC checks the control traffic amount during the past 2
s of each vSwitch. If the amount is higher than the γ value,
it increases γ for a certain percentage. On the other hand, if
lower, it decreases γ. Libera-RC implementation updates γ
by incrementing or decrementing the past γ by 5%. We set
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Fig. 15: Meteor generalizability—NCL comparison by multi-
ple tenants over a 4-ary fat-tree topology. Details in §IV-C.

5% empirically to get the best results from Libera-RC. We use
Libera-RC to see the effectiveness of the prediction of Meteor.

1) MTL: We measure MTL per each control message and
show the 99% tail MTL. Fig. 13a shows the MTL for the
network control of forwarding setup. For the small number
of vSwitches, such as 8, three NHs show relatively similar
MTLs, such as 50.1 ms on average. However, as the number
of vSwitches increases to 128, MTLs diverge significantly. For
128 vSwitches, Meteor reduces MTL up to 92.2% and 91.7%
(12.7× and 12× improvements), respectively, compared to
Libera and Libera-RC. Second, Fig. 13b shows the MTL
of network monitoring. The MTLs of Libera and Libera-RC
continuously increase by up to 10.1× and 6.4×, respectively.
On the other hand, the MTL of Meteor increases only up to
2.6×, which is the 3.9× and 2.5× improvements over Libera
and Libera-RC.

2) NCL: Fig. 14a shows the average NCL for forwarding
setup. All NHs have similar NCL with 8 vSwitches—166.6 ms
on average. However, when the number of vSwitches increases
to 128, the NCLs of Libera, Libera-RC, and Meteor increase
up to 12×, 10.7×, and 3.9×, respectively. This means that
Meteor helps a tenant finish the forwarding setup up to 3.5×
and 2.9× faster (71.4% and 65.7% shorter) than Libera and
Libera-RC. Fig. 14b depicts the average NCL for network
monitoring. For 8 vSwitches, again, there is a little difference
in NCL between three NHs—40.4 ms on average. However,
as the vSwitches increase, their differences become greater.
For example, with 128 vSwitches, Meteor enables the network
monitoring 3.8× and 2.5× faster (73.7% and 60.2% shorter)
than Libera and Libera-RC, respectively. Note that NCLs in
non-virtualized SDN reach up to 1 s for stress tests in the
control channel [22]–[24]. Meteor exhibits NCLs by up to 612
ms (128 vSwitches in Fig. 14a), which means that Meteor is as
efficient as the non-virtualized SDN by achieving the control
channel isolation.

C. Generalizability

In this subsection, we evaluate whether Meteor can be
applicable with network topologies and VN settings different
from those used in the training dataset—we call it generaliz-
ability. Note that the training dataset of Meteor is generated
in a linear topology with one tenant. To demonstrate the
generalizability, we experiment with 6 tenants in 4-ary fat-tree
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Fig. 16: Overheads. Details in §IV-D.

topology (20 physical switches). Fat-tree is the representative
topology for datacenters, and it is much more complex than
the linear topology as it has multiple forwarding paths between
hosts. For experiments, each VN is created as a tree topology
containing 10 vSwitches, so the number of vSwitches increases
from 10 to 60. Then, the NCLs for forwarding setup and
network monitoring are measured. We also measure MTL, but
the results are not included in this paper due to the space limit.

1) NCL for forwarding setup: Fig. 15a shows the average
NCL for forwarding setup as the number of tenants increases.
The x-axis is the number of tenants, and the y-axis is the NCL
with the whiskers of NCL ranges. As the number of tenants
increases from 1 to 6, the average forwarding setup times of
Libera, Libera-RC, and Meteor increase 3.12×, 3.28×, and
1.65×, respectively. So, when the number of tenants is 6,
Meteor improves (reduces) NCL up to 2.2× and 2.1× than
Libera and Libera-RC, respectively. These improvements for
forwarding setup are less than the improvements of Meteor on
the experiment setup used for the training dataset (i.e., 3.5×
and 2.9×), but it still achieves reasonable improvements over
more complex topologies and higher numbers of tenants.

2) NCL for network monitoring: We evaluate the gen-
eralizability with network monitoring. Fig. 15b shows the
average NCL for network monitoring. Meteor always shows
the smallest latency—on average, 46.2% and 35.6% lower
than Libera and Libera-RC. In addition, Meteor exhibits a
maximum of 2.3× and 1.8× improved (reduced) latency than
Libera and Libera-RC, respectively. Similar to the forwarding
setup, NCL for network monitoring improves less than the
experiment setup used for the training dataset (i.e., 3.8× and
2.5×). However, Meteor still shows significant improvements
over a complex experiment setup. We believe that the results
confirm the generalizability of Meteor.

D. Overheads

We evaluate the overhead of Meteor in terms of memory
consumption and CPU cycles. In the experiment setup ( §II-B),
the memory consumption and CPU cycles are measured in a
server that runs Meteor (i.e., Intel Xeon E5-2600 CPUs and
64 GB memory). We vary the number of vSwitches from 8
to 128. Fig. 16 shows the measurement results. The memory
consumption is represented by bars in Fig. 16a. Compared to



Libera, Meteor consumes 5.3 MB higher memory on average,
which is only 0.4% increase.

The CPU cycles are shown in Fig. 16b. Note that the CPU
cycles cover the entire workflow of Meteor, but not the Meteor
predictor because a GPU (NVIDIA RTX 2080 Ti) is used. Fig.
16 shows that, on average, Meteor consumes 12% more CPU
cycles than Libera and 1% more than Libera-RC. This increase
is because Meteor collects input features for each vSwitch, and
calculates and enforces γ per window. Given that Meteor yield
up to 3.8× improvement in NCL (§IV-B2), we believe that the
increase in CPU cycles is acceptable.

V. DISCUSSION

Meteor predictor for other SDN controllers. The Meteor
predictor in this study is trained based on the dataset of ONOS
controller. A question is whether the Meteor predictor can
be used for other SDN controllers. We test its feasibility by
training the Meteor predictor for a different SDN controller,
i.e., OpenDaylight (ODL) [51], which is another well-known
controller. We generate a dataset for ODL with the same setup
of ONOS (§III-A4). The newly trained Meteor predictor for
ODL shows an RMSE of 19.8, which is quite comparable to
that of ONOS (i.e., 16.9 in Fig. 11). The results show that the
Meteor predictor proposed in this study can be trained on other
SDN controllers with reasonable accuracy; so, we believe that
the Meteor predictor can be used with other SDN controllers.

Necessity of prediction. In this study, we use prediction
to offer control channel isolation in SDN-NV. One might be
curious why the prediction is required. The reason we use
the prediction is that each vSwitch receives greatly different
control traffic in bursts; thus, it is difficult to calculate the
proper γ without predicting the future control traffic. Indeed,
we have shown that the γ calculation only based on past
information (e.g., Libera-RC) is insufficient in offering control
channel isolation. For example, in MTL, as shown in Fig. 13a,
Libera-RC shows little difference (i.e., 4.3% differences on
average) from Libera when the number of switches increases
to 64 and 128. Thus, we believe the prediction in Meteor is a
proper design choice to offer control channel isolation.

Global γ calculation. Meteor calculates γ per vSwitch
individually. One possible question is the necessity of a global
γ calculation by considering all the vSwitches together. The
global γ calculation might be necessary to provide fairness
among vSwitches. However, an SDN controller creates con-
trol traffic per vSwitch, which, by nature, greatly differs as
discussed in §II-C2. So, the fairness itself is controversial
because it could hurt the end-to-end network control from the
SDN controller. In addition, the global calculation causes non-
trivial overheads because it requires periodic synchronization
between vSwitches to manage all the vSwitches globally.
Thus, we leave this topic for future research.

Using different window sizes. It is possible that the
window size can be different for input (Xi) and output (Xi+1)
features. For example, predicting the next 2 s by considering
the past 5 s is a possibility. Most existing studies in ML
fields, such as natural language and speech processing, use

LSTM autoencoder with the same window size for Xi and
Xi+1 [39], [52]. To verify this possibility, however, we run
additional experiments that are not reported in this paper. We
find that Meteor shows 19× higher prediction accuracy when
the window sizes of Xi and Xi+1 are the same (i.e., 2 s),
comparing the case of the different sizes (i.e., 5 s and 2 s as
Xi and Xi+1, respectively). Thus, we set the same window
size for the input and output features.

VI. RELATED WORK

NH. The studies such as FlowVisor [20], FlowN [17],
and OpenVirteX [16], defined and introduced key message
translation operations such as topology and address. CoVisor
[15] proposed a message translation to composite multiple
flow rules in an NH that enabled multiple SDN controllers
to manage a single network. Libera [5] defined a cloud
service model, called network infrastructure-as-a-service, and
summarized key message translation techniques to improve the
scalability and flexibility of an NH. V-Sight [11] and TeaVisor
[19] further developed message translation in NHs to achieve
accurate network monitoring and bandwidth isolation for the
data plane, respectively. Furthermore, HyperFlex [53] sliced
the CPU of the NH by de-compositing the monolithic NH
into micro functions. However, the above studies lack a control
channel isolation scheme.

ML on SDN systems. As ML becomes common tools
for making optimized decisions, many applications on SDN
systems, such as routing optimization, security, QoS predic-
tion, traffic classification, and resource management, have
been using ML (e.g., random forest, neural network, and
reinforcement learning) [44]. However, ML has not been used
for control channel isolation, which is the focus of our study.

VII. CONCLUSION

This study presents Meteor that offers the control channel
isolation in SDN-NV by predicting the control traffic. Meteor
designs an LSTM autoencoder to calculate γ and enforces
γ per virtual switch. The performance evaluation of Meteor
reveals that MTL is enhanced up to 12.7×, which improves
the control channel isolation significantly. In addition, the NCL
reduces by up to 73.7% over the existing NHs without predic-
tion. Furthermore, we show that Meteor is quite generalizable
in that it achieves reasonable improvements even when it runs
in different topologies from the training dataset. As these
results make the end-to-end control latency comparable to the
non-virtualized SDN, we hope that this study contributes to
ushering in the practical use of SDN-NV in datacenters.
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