Predictive Placement of Geo-distributed Blockchain
Nodes for Performance Guarantee

Junseok Lee*, Yeonho Yoo*, Chuck Yoo, Gyeongsik Yang
Department of Computer Science and Engineering, Korea University
{jslee, yhyoo, chuckyoo} @os.korea.ac.kr, g_yang@korea.ac.kr

Abstract—Blockchain-as-a-service (BaaS) in cloud datacenters
is gaining widespread attention due to its high performance
and privacy. However, existing BaaS solutions lack a method
for deciding the proper placement of blockchain nodes across
virtual machines in worldwide datacenters to achieve desired
performance. Our motivating experiments show that transaction
processing performance (TPS) varies ~31.6% depending on the
placements. To provide an automatic placement solution for
BaaS, we propose Cyan that predicts the TPS for blockchain
node placements. Our evaluations on Google Cloud Platform
demonstrate that Cyan improves the TPS guarantee ~2.39x
compared to existing techniques.

Index Terms—Blockchain-as-a-service, Hyperledger Fabric,
Node Placement, Performance Guarantee

I. INTRODUCTION

Recently, blockchain-as-a-service (BaaS) that operates in
cloud datacenters has received widespread attention. It al-
lows only pre-permitted and trusted participants to join the
blockchain system, which provides higher security and privacy
compared to public blockchains that permit anyone to join.
Also, BaaS can scale to a larger amount of data (transactions)
for large-scale enterprises [|1] with the fluent computing in-
frastructure of datacenters. The most widely used platform for
BaaS is Hyperledger Fabric [2] that is maintained by Linux
Foundation. For example, BaaS providers, such as Google
Cloud Platform and IBM Cloud, run Hyperledger Fabric for
their BaaS offerings.

To initialize BaaS, system operators first create a virtual ma-
chine (VM) within cloud datacenters. The location of the VM
is decided based on where the blockchain nodes are intended to
be deployed. For example, if BaaS is to be deployed and run
across the United States, Asia, and Europe, VMs to deploy
the nodes are created in a datacenter in the United States,
one in Asia, and another in Europe. On the created VMs,
the system operators create blockchain nodes and operate the
BaaS service to enter transactions, validate transactions, and
maintain integrity on the validated transactions in the form of
ledger across blockchain nodes [3]].

*Junseok Lee and Yeonho Yoo are co-first authors. This research was
supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2021R1A6A1A13044830), by the NRF grant funded by the Korea government
(MSIT) (NRF-2023R1A2C3004145, RS-2024-00336564), by ICT Creative
Consilience Program through the Institute of Information & Communications
Technology Planning & Evaluation grant funded by the Korea government
(MSIT) (IITP-2024-2020-0-01819), and by the Google Cloud Research Cred-
its. Corresponding authors: Chuck Yoo and Gyeongsik Yang

Considering the advantages of transaction consistency
across blockchain nodes, significant efforts are dedicated to
enhancing Hyperledger Fabric, such as analyzing transaction
processing performance, ensuring high fairness, and increasing
reliability [4]]. Despite diverse efforts, the practical use of BaaS
in real-world systems remains puzzling due to the black-box
nature of blockchain node placement.

In our motivating experiments, the current black-box-based
placement approach poses a significant problem. We run three
different VMs on the Google Cloud Platform across datacen-
ters in the United States, Europe, and Asia. Depending on the
number of blockchain nodes per VM (placement strategy), we
observe that the number of transactions processed by the BaaS
per second (TPS) varied by ~31.6% (details in §I-B). Several
studies automated the creation of the nodes on VMs [5]], but
to our knowledge, the decision on proper placement to gain
specific TPS remains unanswered. Due to a lack of options,
operators of BaaS systems should rely on a time-consuming
trial-and-error approach to find the placement for stable and
reliable blockchain services in the cloud.

Therefore, this study proposes Cyan, a new blockchain node
placement technique for guaranteeing desired BaaS perfor-
mance. Our motivating experiments demonstrate that the ap-
propriate blockchain node placement for achieving the specific
desired TPS cannot be manually or statistically modeled by a
single factor, such as networking bottlenecks between VMs.
Thus, we apply a machine learning (ML) technique to find the
proper placement that guarantees the desired TPS.

To design an ML model, we require a dataset of blockchain
node placements and their performance to train it. However, to
the best of our knowledge, such a dataset is lacking. Thus, we
have developed a placement dataset generation tool for the tar-
get BaaS system. We carefully select input and output features
to accurately detect the relationship between the placement
and its TPS. Furthermore, we test various ML algorithms
(e.g., random forest, gradient boosting, deep neural network,
and support vector machine) and use the one that shows the
best prediction accuracy. Using the prediction model, Cyan
determines the proper blockchain node placement in advance
of the real system running and creates the blockchain nodes
according to the placement.

We fully implement Cyan that runs with real-world dat-
acenters. Our evaluations are conducted using Google Cloud
Platform and demonstrate ~2.39x improvements in TPS guar-
antee compared to existing techniques.

Copyright © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. This is an accepted version of this paper. Final published paper can be found at IEEE Xplore.

400 3 300
< N
$350_**** g 250 co
= 200 *ox £ 52001 @ ... °
 * ¥ %élSO- " o
250+ 5 100———TTT T
P1P2P3P4P5P6P7P8P9P10 é PIPZPBPAP5P6P7P8P9P10

Placement Placement

(a) TPS per placement.
Fig. 1: Motivation experiments in Google Cloud Platform.

(b) Average latency.

II. BACKGROUND AND MOTIVATION
A. Background: Hyperledger Fabric

Hyperledger Fabric consists of two kinds of nodes: peers
and orderers. A peer is the main node that receives data
(transaction) in the blockchain network. The peer node also
runs a program (chaincode), such as data retrieval, on the
received transactions and validates them. An orderer is re-
sponsible for arranging the order of validated transactions
in peer nodes using a consensus protocol, such as Kafka,
PBFT, or Raft, and generates a block, which is stored in
the ledger. The ledger is replicated across every peer; thus,
every peer maintains validated transactions with integrity and
consistency. All peer nodes receive, validate, and commit
transactions through communications between each other. In
general, orderer nodes are created in smaller numbers than peer
nodes, which require less complexity in placement [6]]. In this
work-in-progress study, we focus on the placement of peer
nodes that can significantly increase according to the number
of users and data maintainers of BaaS.

B. Motivating Experiment

Experiment setup. We use Google Cloud Platform for
experiments. We create and run three different VMs in the
United States, Europe, and Asia datacenters, respectively.
Specifically, each VM is provisioned as an e2-standard-8
instance at US-east, Europe-west, and Asia-northeast of GCP.
The e2-standard-8 instance is a VM with eight vCPUs, 32
GB memory, and 100 GB disk. During experiments, the VMs
do not suffer from a shortage of CPU or memory. For the
motivating experiments, we place six peers on three VMs.
Experiments with a higher number of peers are in §IV|
We measure TPS by Hyperledger Caliper when changing all
possible placements of peer nodes on the VMs. As for the
workload, we use Fabcar with a 19 KB payload size and a
sending rate of 400. Note that we also test different workloads,
but due to the page limit, we present the representative results.
All experiments are repeated at least 10 times.

TPS per placement. We measure the TPS for all possible
placement strategies. For three VMs (VM1, VM2, and VM3)
in our experiment setup, when we place one, two, and three
different peers on three VMs, respectively, we denote the
placement as (1, 2, 3). We ensure that at least one peer is
placed on each server. Thus, for placing six peers across three
different VMs, 10 different placement strategies are possible,
as follows: (1,1,4), (1,2,3), (1,3,2), (1,4,1), (2,1,3), (2,2,2),
(2,3,1), (3,1,2), (3,2,1), and (4,1,1). We denote each placement
strategy from P; to Pig.

| Blockchain network config)»L @
| Network environments F*%» |ﬂ I o e > b
| Performance metrics }'q input output Predict] 9 .

Blockchain Dataset Cyan Placement;
network generator predictor manager !
Fig. 2: Cyan architecture
TABLE I: BaaS configurations.
Feature [Example [Range
of VMs 3 2-10
of peer nodes 8 2-10
Latency between VMs 30ms, 100 ms, 250 ms 0.1-350
Type of chaincode operation put put, get
Average transaction size 350 20-19K
Transaction sending rate 500 transactions/s 300-800
Placement strategy (3,1,4) All possible

Fig. [Ia] presents the TPS (y-axis) for the 10 different
placements (x-axis). The highest TPS is 364 in Py, and the
lowest is 276.5 in Py, which shows a difference of 31.6%. In
other words, the TPS of the entire BaaS varies by 31.6% only
due to the difference in node placement.

Because all transaction validations are achieved through
communication between peer nodes, latency between these
nodes is one of the important metrics affecting TPS. Fig. [Tb]
shows the average latency between blockchain nodes on VMs
per placement. We calculate the average latency values using
the ping latency between geo-distributed VMs. In Fig. Ps
is the placement with the lowest TPS. However, Py does not
have the highest (worst) latency; instead, it has the second-
best (lowest) latency. For P, which shows the highest TPS, it
does not exhibit the best (lowest) latency, but the eighth lowest.
This means that considering networking bottlenecks alone is
insufficient to determine proper placement to guarantee desired
TPS. This observation leads us to design Cyan with ML to
consider various BaaS factors.

III. Cyan DESIGN

Fig. [2] shows the Cyan architecture that consists of three
main components: 1) dataset generator, 2) Cyan predictor,
and 3) placement manager. The dataset generator creates a
dataset to train the Cyan predictor. The Cyan predictor is
trained offline to predict TPS with a placement. The placement
manager performs predictions on placement strategies and
finds the proper one to achieve the desired TPS.

Dataset generator. The Cyan predictor requires a dataset
for training. However, to our knowledge, there are no available
datasets for training TPS in relation to peer placements. Thus,
Cyan generates the dataset itself by 1) iteratively changing
input features of the prediction models (to be explained in the
next paragraph) and 2) measuring TPS (output feature).

We determine the input features to reflect three major factors
that are known to be effective in analyzing TPS [1], [4].
Table |I| summarizes the input features, examples, and their
ranges in the dataset. First, we include BaaS system factors.
Specifically, we use the number of VMs and peer nodes to
place. Also, we use the latencies between VMs to reflect the
network communication overheads.

Second, we take features of the BaaS service complexity
that users run. BaaS services are defined by entering and
retrieving transactions into the ledger. We consider the more
frequent operation type as an input feature (i.e., put and get)
to consider the different operation complexity in our model.
Also, we consider the average transaction size (payload size)
and the number of transactions sent to BaaS (sending rate)
that also affect TPS, as revealed in the previous study [4].

Third, we consider available placement strategies. When
creating a dataset, we randomly set the above input features
and then find all possible peer placements for the number
of VMs and peers. We take all possible placements as data
records. Note that, the placement manager (to be explained
later) performs predictions on all possible placements and finds
the most suitable placement to satisfy the desired TPS. We use
30K records that are enough to train the Cyan predictor.

Cyan predictor. To discover ML algorithm with the highest
accuracy for the Cyan predictor, we test and compare various
algorithms, including linear regression, random forest, k-
nearest neighbors, decision tree, gradient boosting, deep neural
networks, and support vector machine. We train each algorithm
using the dataset generated in the previous subsection. The
collected dataset is divided into 80% for model training and
20% for testing (validation). For each model, we identify the
hyperparameters that obtain the lowest prediction error through
random search with at least 30 trials [7]. After thorough
training, we select the random forest model because it provides
the best results—~2.56x better for root mean squared errors
and ~4.36x better for mean absolute errors than others.

Placement manager. The placement manager selects a
placement strategy that satisfies the desired TPS. With the
Cyan predictor trained as mentioned above, the placement
manager predicts the TPS values for all possible placement
strategies for the given number of VMs and peers. Then, it
selects the placement strategy that shows a predicted TPS most
similar to the desired TPS. Once the strategy is determined,
the placement manager deploys the peer nodes on the VMs
and runs the BaaS services.

IV. EVALUATION

In this section, we implement and evaluate Cyan. Cyan is
implemented with about 7000 lines of code and can operate
in real-world datacenters. We evaluate Cyan on the Google
Cloud Platform with a similar setup in

To our knowledge, none of the existing studies provide peer
node placement decisions. So, we implement and compare
Cyan to two techniques as follows: random placement and
latency-aware placement. Random placement chooses one
strategy randomly among possible placements, which is sim-
ilar to the existing black-box-based approach. We also imple-
ment latency-aware placement that considers the networking
delays between peers. Given the number of VMs and peers
specified by users, this technique calculates the average latency
between peers across all available placement strategies (similar
to Fig. . Also, we observe that our evaluation setup shows
the minimum and maximum TPS of 0 and 800, respectively.

Random Random
Latency-aware Latency-aware
Cyan ‘ Cyan

0 20 40 60 80100 0 2 4 6

TPS guarantee rate (%) Deployment time (s)

Fig. 3: TPS guarantee rate. Fig. 4: Deployment time.

If the desired TPS from the user is 200, this matches the lower
quartile (25%) at the minimum and maximum TPS range.
Latency-aware placement selects the placement that shows the
average latency close to the lowest 25%.

We evaluate Cyan for TPS guarantee and deployment time.
We repeat the experiment trials 1000 times by selecting a
random number of peers, VMs, chaincode type, latencies of
VMs, transaction size, and sending rate for each trial. Each
value is chosen from the range shown in Table [I| (e.g., ~10
VMs and ~10 peers). We select values that are not used in
the model training as much as possible.

TPS guarantee. Fig. [3| presents the TPS guarantee rates
of three techniques. For each of the 1000 experiments, a trial
is considered to have a guaranteed TPS when the actual TPS
differs from the desired TPS by within 10%. We calculate
the ratio of TPS guaranteed trials out of the 1000 trials. In
Fig. B] Cyan improves the performance guarantee by 2.39x
and 1.52x compared to random placement and latency-aware
placement, respectively.

Deployment time. Fig. [shows the deployment time that
is the sum of the durations in deciding the proper placement
strategy and creating the peer nodes on the VMs of Google
Cloud Platform. In Fig. [] the three techniques show similar
deployment times with only a 3.1% difference. The results
demonstrate that the overhead of Cyan in predicting proper
placement strategy is not significant in the deployment process.

V. CONCLUSION AND FUTURE WORK

This study introduces Cyan, a predictive peer node place-
ment technique for TPS guarantees. Cyan enhances TPS
guarantees by ~2.39x without significant deployment delays.
In future work, we will extend Cyan to consider orderer node
placements. Also, we will cover heterogeneous VM capacities,
such as CPU, memory, and storage.

REFERENCES

[1] J. Dreyer, M. Fischer, and R. Tonjes, “Performance analysis of Hyper-

ledger Fabric 2.0 blockchain platform,” in Workshop on Cloud Continuum

Services for Smart IoT Systems, 2020, pp. 32-38.

E. Androulaki et al., “Hyperledger Fabric: a distributed operating system

for permissioned blockchains,” in Thirteenth EuroSys, 2018, pp. 1-15.

[3] S. Mitrevska et al., “Blockchain as a service, an overview on AWS and
its BaaS,” in 30th Telecommunications Forum. 1EEE, 2022, pp. 1-4.

[4] G. Yang et al., “Resource analysis of blockchain consensus algorithms
in Hyperledger Fabric,” IEEE Access, vol. 10, pp. 74 902-74 920, 2022.

[S] W. M. Shbair, M. Steichen, J. Francois, and R. State, “BlockZoom: Large-
scale blockchain testbed,” in 2019 [EEE International Conference on
Blockchain and Cryptocurrency (ICBC), 2019, pp. 5-6.

[6] A. Song et al., “Fast, dynamic and robust byzantine fault tolerance
protocol for consortium blockchain,” in 2019 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Big Data & Cloud Com-
puting, Sustainable Computing & Communications, Social Computing &
Networking, pp. 419-426.

[71 Y. Yoo et al., “Machine learning-based prediction models for control
traffic in SDN systems,” IEEE Transactions on Services Computing, 2023.

[2

—

	Introduction
	Background and Motivation
	Background: Hyperledger Fabric
	Motivating Experiment

	Cyan Design
	Evaluation
	Conclusion and Future Work
	References

