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Abstract—Federated learning (FL) is an appealing model
training technique that utilizes heterogeneous datasets and user
devices, ensuring user data privacy. Existing FL research pro-
posed device selection schemes to balance the computing speeds
of devices. However, we observe that these schemes compro-
mise prediction accuracy by ∼57.7%. To solve this problem,
we present Harmonia that enhances prediction accuracy, while
also balancing the diverse computing speeds of devices. Our
evaluation shows that Harmonia improves prediction accuracy
by ∼1.7× over existing schemes.

Index Terms—Federated Learning, Data Privacy, Distributed
Machine Learning, Collaborative Learning, Client Selection

I. INTRODUCTION

The use of internet of things (IoT) devices generates vast
amounts of data for training machine learning (ML) models
[1]. To train an ML model with the data, federated learning
(FL) is gaining widespread attention [2]. In FL, a central
server selects devices to participate in each training round
and sends the model structure for training on each device.
Then, each device trains the model with its own data and
sends the trained model’s parameters back to the central
server. The central server aggregates the received parameters
from individual devices into a global model. Because the vast
amount of data for model training is not collected centrally,
the communication overhead between devices and the server
is reduced [3]. In addition, as the training data exists only on
devices, privacy is preserved [4].

Previous studies proposed various FL schemes, and their
major concern was how to select devices for participation.
Some schemes randomly selected devices for model training
(for example, selecting 10% of total devices per round [2]).
Also, several studies considered the heterogeneity in comput-
ing resources among devices. The range of devices partici-
pating in FL training spanned from resource-constrained IoT
devices to high-performance servers [4], leading to differences
in computing and communication power. As poorer devices
could significantly reduce the overall training speed, some
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studies excluded devices with low computing resources and
selected devices with higher resources [5], [6].

However, we observe that existing FL schemes significantly
compromise prediction accuracy, the paramount metric in ML
model performance. We evaluate existing FL schemes and
compare their prediction accuracy to central learning, in which
a single machine collects data from devices and trains a
model. Our evaluation exhibits that prediction accuracy in
FL is ∼57.7% worse than central learning. This reduction in
accuracy stems from the selective participation of devices in
FL; thus, data from devices that are excluded from FL training
is not utilized, which leads to training on a more scarce and
limited dataset.

To this end, we propose a new FL scheme, called Harmonia,
that improves the prediction accuracy of FL by making full use
of dataset on devices. The main observation behind Harmonia
is that, nowadays, each user owns multiple devices, such as
smartphones, tablets, smartwatches, and laptops, and within
these devices, data sharing is allowable [7]. Because the data
is transferred only between devices belonging to the same user
and is never delivered to the central server, privacy is ensured.

Based on this observation, Harmonia first groups devices
according to their owner. Within each group, Harmonia selects
a device to participate in FL training, termed a “leader,” based
on the computing power of the devices to enhance training
speed. Then, Harmonia orchestrates the devices in the group
to send their data to the leader, enabling the leader to use
all the group’s data for training. Our evaluation demonstrates
that Harmonia improves the prediction accuracy by ∼1.71×
compared to existing FL schemes. Harmonia further improves
the time-to-accuracy by ∼34.6× (details in § IV).

II. BACKGROUNDS AND MOTIVATION

A. Background and Existing Schemes

1) FL: In comparison to central learning, which collects all
the training data on a central server for the server to perform
the ML model training [8], [9], FL enables collaborative model
training across heterogeneous devices. A single trial of model
training in FL is called a round. The devices in each FL round
have different and imbalanced datasets for training.

FL works with two different scenarios of dataset existence
on devices: 1) distribution difference and 2) quantity difference
[10]. Distribution difference means that devices have imbal-
anced numbers of datasets for each prediction label. Assume
two devices—device 1 and device 2— and the model predicts
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on two labels, “cat” and “dog.” Then, in distribution difference,
device 1 might have seven data records for “cat” and four for
“dog,” and device 2 has four for “cat” and nine for “dog.”
Quantity difference means that devices lack data for a certain
prediction label. For example, device 1 has data records only
for “cat,” and device 2 has records only for predicting “dog.”
Generally, FL schemes are designed and evaluated based on
both dataset existence scenarios.

2) Existing schemes: FedAvg [2] is the representative
scheme. The central server of FedAvg randomly selects de-
vices to join in each training round, and these selected devices
start the training with each local model that is stored on the
central server. The training is done by the local data of each
device. After training, each device sends the trained model
parameters back to the server. Finally, the server aggregates
the received parameters to update the global model.

The heterogeneous computing resources in FL devices cause
delays in training for every round, a phenomenon called the
straggler effect [4]. So, several studies attempted to address
device heterogeneity by selecting devices based on differences
in computing resources. For example, TiFL [5] profiles the
training speeds of devices and prioritizes the devices with fast
speed to participate in each round. Another scheme, Oort [6],
sets a threshold for training speed. It then profiles the training
speeds of each device and selects devices whose speeds are
faster than the threshold to participate in the training.

B. Motivating Experiment

Here, we examine the problem of existing FL schemes
through the following experiments.

1) Setup: For experiments, we evaluate three different
schemes: 1) central learning, 2) FedAvg, and 3) TiFL. For
central learning, we use a machine equipped with an Intel i7-
14700KF CPU and an RTX 3080 GPU. The central training
is performed by the GPU. For FedAvg and TiFL, we set up a
cluster that constitutes one central server with an Intel i5-2300
CPU and five user devices: three Raspberry Pi 4Bs and two
NVIDIA Jetson Nanos. The user devices perform the training.

We train ResNet-18 model with CIFAR-10 dataset. We also
train other models and datasets, but due to the page limit, we
present the representative results here. In central learning, the
machine has the entire dataset. For FL schemes, i.e., FedAvg
and TiFL, we use identical models and datasets, but each
user device holds a portion of the dataset and trains the ML
model with that portion. We evaluate FedAvg and TiFL for

the two dataset existence scenarios on devices: distribution
and quantity differences. We use NIID-Bench [10] to evaluate
the two scenarios.

2) Poor accuracy: Fig. 1 presents the prediction accuracy
for two different dataset existence scenarios. We do not limit
the number of FL training rounds for each FL scheme until
the trained model converges. The bars in the figure represent
the accuracy once the model has converged during the training
process. In the distribution difference scenario (Fig. 1a), both
FL schemes, FedAvg and TiFL, exhibit worsened prediction
accuracy compared to central learning. Specifically, their de-
creases in accuracy are 16.9% and 24.8%, respectively.

For the quantity difference scenario (Fig. 1b), both FedAvg
and TiFL also exhibit decreased prediction accuracy compared
to central learning, by 55.1% and 57.7%, respectively. In the
quantity difference scenario, we observe that the accuracy
decrease is 2.8× greater on average than that of the distri-
bution difference scenario. This is because, in the quantity
difference scenario, each device does not possess data records
of all prediction labels but contains only a few, leading to a
more imbalanced situation than in the distribution difference
scenario (Fig. 1a). In summary, for both dataset distribution
scenarios, the existing representative FL schemes experience
significant drops in accuracy.

III. DESIGN

Here, we explain Harmonia. Fig. 2 shows the structure of
Harmonia, which consists of two main components: group
orchestrator and leader elector. The group orchestrator creates
device groups from the devices participating in FL training and
orchestrates data movements between devices within a group.
The leader elector exists per device group and selects a leader
from each group. We explain each component in detail.

Group orchestrator. We first explain the group orchestra-
tor. The group orchestrator assigns a unique user ID to each
user. For every new device, each device is identified by the
user ID of the device owner and the unique index of the device
(device ID). The group orchestrator then creates a group of
devices having an identical user ID.

Also, the group orchestrator manages the data transfer
between devices within a group. For each group, the leader
elector (to be explained in the next subsection) selects leaders
to participate in FL training rounds. Before starting an FL
training round, the group orchestrator initiates data transfer
from each device to the leaders. The data transferred to the
leader is used for model training. If the data transferred to the
leader in the previous FL training round has not changed, the
group orchestrator omits the data transfer in the subsequent
round. We implement the data transfer between devices using
gRPC for compatibility between devices.

After the data transfer, the group orchestrator initiates the
training round by sending a global model to leader devices.
The leader device then starts the model training and, once
the training is finished, sends the model parameters to the
group orchestrator. Once all leader devices send the model
parameters, the group orchestrator aggregates the results and



updates the global model. We use the model aggregation
algorithm proposed in FedAvg [2]; however, it can be replaced
with any other algorithm, such as FedProx [11].

Leader elector. The leader elector exists per device group
and manages devices within that group. For example, when-
ever a new device joins a group, the leader elector runs. Also,
the leader elector profiles the training speed of the newly
joined device. Also, after every five FL rounds that each device
has participated in, we reperform the profiling, because the
available computing resources (e.g., CPUs, GPUs, or memory)
can vary over time. The profiling is conducted as follows.

The profiling is conducted using the same model structure
that is used in the FL training rounds. For each device, the
leader elector sends the model structure and a dataset for
profiling. Note that we use the same dataset across devices
to fairly compare the training speeds between devices. The
leader elector then initiates a single iteration of training on
each device as profiling. The outcomes from each device can
be as follows. First, a device can fail to execute profiling due
to insufficient memory (out-of-memory) or CPU resources.
Second, if a device has sufficient resources, it successfully
completes the profiling. Each device reports its outcome,
whether a failure or a success, to the leader elector. The leader
elector records the device (device ID) that reports success,
along with the training time calculated from the start of
profiling to the report of success outcome.

Based on the profiled training times of the devices, the
leader elector selects the leader of each group before every FL
round begins. If the group has no newly joined devices and
no updates in profiling exist, the leader remains unchanged. If
there are updates, it selects the device that shows the shortest
training time. The leader elector notifies the group orchestrator
of the decision to facilitate further data transfer between the
devices and the leader and to begin the FL training round.

IV. EVALUATION

We implement Harmonia with Python of 855 lines of
code. For evaluation, we measure the prediction accuracy
and training time in the same setup as explained in §II-B1.
Also, we configure five devices to belong to two users: one
user has two Raspberry Pis and one Jetson Nano, and the
other user owns one Raspberry Pi and one Jetson Nano. Also,
we compare Harmonia with three different schemes, central
learning, TiFL, and FedAvg (explained in §II-B1).

Accuracy. Figs. 3a and 3b show the prediction accuracy
of training schemes for distribution difference and quantity
difference scenarios, respectively. We first explain the results
of the distribution difference scenario in Fig. 3a. Compared
to existing FL schemes (TiFL and FedAvg), Harmonia im-
proves the converged prediction accuracy by 1.32× and 1.19×,
respectively. Furthermore, Harmonia’s converged accuracy is
quite similar to central learning, with only a 0.78% difference.
For the quantity difference scenario (Fig. 3b), Harmonia
also improves the converged prediction accuracy compared
with TiFL and FedAvg by 1.71× and 1.61×, respectively.
Compared to central learning, it shows a 27.6% difference.
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Fig. 3: Harmonia evaluation.

Time. Fig. 3c presents the time-to-accuracy which means
the training time required to achieve a specific target accuracy.
As FL devices have highly different datasets and reveal dif-
ferent converged accuracies, existing studies measure the time
to achieve the same target accuracy for fair comparison [5],
[6]. Similar to these studies, we select the lowest converged
accuracies from experiments as the target accuracies. In our
case, these are 63.6% and 35.8% for distribution and quantity
difference scenarios, respectively (as in Figs. 3a and 3b). We
normalize the measured time-to-accuracy with the value of
Harmonia; so, all Harmonia values are 1. Also, as central
learning trains models on a different hardware (GPU server)
without FL, we exclude it from the comparison. In both dataset
distribution scenarios, Harmonia significantly improves the
time-to-accuracy. On average, Harmonia reduces the time by
8.1× and 34.6× compared to TiFL and FedAvg, respectively.
These results demonstrate that by utilizing more datasets from
the devices, Harmonia achieves higher accuracy in less time.

V. CONCLUSION AND FUTURE WORK

We introduce Harmonia, a new FL scheme for inclusive
dataset usage. Our evaluation shows that Harmonia improves
the prediction accuracy and time-to-accuracy ∼1.71× and
∼34.6×, each. In future work, we plan to further enhance
the accuracy of Harmonia in the quantity difference scenario.
Also, we will consider networking costs to further enhance the
efficiency of the Harmonia framework.
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