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Datacenter network topology contains multiple paths between server machines, with each path assigned
a weight. Software switches perform traffic splitting, an essential networking operation in datacenters.
Previous studies leveraged software switches to distribute network connections across paths, under the
assumption that the software switches accurately divide connections according to path weights. However,
our experiments reveal that current traffic splitting techniques exhibit significant inaccuracy and resource
inefficiency. Consequently, real-world datacenter services (e.g., data mining and deep learning) experience
communication completion times that are ∼2.7× longer than the ideal. To address these problems, we propose
VALO, a new traffic splitting technique for software switches, to accomplish two goals: high accuracy and
resource-efficiency. For the goals, we introduce new concepts: score graph and VALO gravity. We implement
VALO using the de-facto software switch, Open vSwitch, and evaluate it thoroughly. On average, VALO
achieves 13.1× better accuracy and 25.4× better resource efficiency compared to existing techniques, with
maximum improvements reaching up to 34.8× and 67.7×, respectively. As a result, VALO demonstrates 1.3×–
2.5× faster average communication completion times for real-world datacenter services compared to existing
techniques.
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1 Introduction
The surge in demand for large-scale networking services, such as web search [19], data mining
[63], and distributed training of deep learning models [84], has led to the utilization of datacenters
(DCs) that provide multiple network paths between hosts, virtual machines (VMs), and containers.
For example, Meta [57], Google [24], and Alibaba [66] implement multiple paths between VMs and
containers to expedite their workloads, such as AI training. By leveraging multiple paths, these
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services achieve high throughput, low latency, and high reliability in network communications [68,
79, 82]. Within the network topology of multiple paths, VMs and containers generate significantly
different numbers of network connections (e.g., TCP or UDP) so that paths carry a wide range of
network traffic depending on the number of connections.

So, across multiple paths, it is crucial to ensure the efficient and accurate distribution of network
connections to provide performant networking services. In this context, “traffic splitting” is a
technique used to distribute network connections across multiple paths based on assigned path
weights. Path weights are the desired ratio of the number of connections assigned to specific paths
relative to the total number of connections. These weights are determined by various factors in
network topology, such as link capacity and congestion degree. For example, a path experiencing
high congestion is assigned a lower weight to reduce the number of connections it handles. The
goal of traffic splitting is to make the ratio of the number of connections per path close to the path
weights [43, 83, 91]. Because network throughput and latency are largely determined by traffic
splitting, the accuracy of traffic splitting plays a paramount role in the performance and reliability
of cloud services [65, 67, 68].

In real-world systems, traffic splitting is frequently realized by software switches. For example,
the DCs of Google [24] and Alibaba [49] run software switches at the physical servers that have
hosts (VMs and containers), so that the packets from the containers or VMs go through the software
switch. At the initial (ingress) point of the paths, the software switches determine a specific path
to transmit the packets. OpenStack [70], a widely used VM orchestration software, also uses
software switches for traffic splitting. Previous studies on software switches have proposed several
techniques to determine path weights to work with traffic splitting to improve link utilization and
enhance the quality of service [21, 35, 36, 45].
However, previous studies did not question the accuracy and overhead of traffic splitting from

software switches. They assumed that 1) switches accurately distribute network connections across
multiple paths according to path weights, and 2) switches do not introduce major bottlenecks
during traffic splitting. Consequently, previous studies have focused primarily on determining path
weights reflecting network status (e.g., the volume of network traffic, link aliveness, and switch
queue congestion). However, our motivating experiments reveal unexpected challenges in traffic
splitting: 1) considerable inaccuracies (§3.2) and 2) resource-inefficiencies (§3.3).
Our motivating experiments with real-world traces (CAIDA [4, 5] and ClassBench [54]) show

that existing traffic splitting techniques demonstrate ∼138% errors in traffic splitting compared
to the expected behavior based on path weights. In addition, even for a single packet, a software
switch can consume ∼32K CPU cycles and induce ∼19.8 𝜇s latency for traffic splitting, which shows
its gross inefficiency. These observations completely contradict the assumptions of previous studies.
As a result, representative DC network workloads, web search, data mining, distributed training
of deep learning models, and in-memory caching, can suffer ∼2.7× longer flow completion time
compared with an optimal traffic splitting scenario. Thus, it is quite clear that revisiting traffic
splitting could benefit the performance of networking services in DCs.

To this end, we propose VALO, a new traffic splitting technique of software switches that satisfies
1) high accuracy and 2) resource-efficiency. To achieve these goals, we first analyze the mechanisms
of existing traffic splitting techniques (§2.2) and pinpoint the challenges with our motivating
experiments (§3). We then construct our own mathematical model, called “score graph.” Given
path weights, this score graph estimates the number of network connections assigned to each
path, which we denote as “volume” (§4.1). We find that the ratio of measured connections per path
significantly differs from the ratio of path weights, indicating the inaccuracy of existing traffic
splitting techniques. But the ratio of the measured connections per path is close to the volume.
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Fig. 2. Traffic splitting mechanism. The traffic splitting occurs at the
switch where multiple paths are available, such as S1 in Fig. 1.

From the score graph, we formulate an accurate and resource-efficient technique called VALO.
The key idea is to introduce a novel parameter called “VALO gravity” that makes the volume of each
path align with the given path weight (§4.2). VALO gravity values are used to distribute network
connections to multiple paths, ensuring adherence to given path weights.

We implement VALO using Open vSwitch (OVS) [64], the de-facto and most widely used software
switch. With this implementation, we extensively evaluate VALO in terms of its accuracy and
resource-efficiency using real-world Internet and DC traces. Furthermore, we conduct end-to-end
evaluations of VALO with real-world DC workloads (e.g., web search, data mining, deep learning,
and in-memory cache of Twitter). The major contributions of this study are as follows:
• Discover the critical challenges associated with the traffic splitting of software switches in DC
networking: inaccuracy and resource-inefficiency.

• Design an accurate and efficient traffic splitting technique by score graph and VALO gravity.
• Achieve 13.1× (∼34.8× at maximum) improved accuracy and 25.4× (∼67.7× at maximum) en-
hanced resource-efficiency on average compared to existing traffic splitting techniques.

• Deliver 1.3×–2.5× superior end-to-end performance on average, and 1.4×–2.8× faster at the
99th-percentile tail, for DC workloads (e.g., deep learning and in-memory cache of Twitter).

• Demonstrate that VALO improves the flow completion time by 1.4× on average when it is applied
to other multipath routing studies.

2 Background
This section explains the background of this study: the roles of software switches in DC (§2.1) and
traffic splitting mechanisms (§2.2).

2.1 Software Switch
Usages. As communication frequently becomes a bottleneck for DC services (e.g., data mining and
distributed deep learning [33, 34]), DCs and previous studies [29, 66, 76] equip each server with
multiple network interfaces. For example, Meta and Alibaba equip each server with eight network
interfaces [30, 66]. Each network interface is connected to a different link in the network topology,
corresponding to distinct paths. Then, each server runs multiple hosts (e.g., containers and VMs)
and a software switch performs traffic splitting to transmit packets to and from these hosts [58, 77].
In the example shown in Fig. 1, S1 in server 1 is a software switch that acts as an ingress switch. S1
determines one of the network interfaces and their corresponding paths (e.g., Path 8) to transmit
packets between two hosts (Container 1 and VM 2). S2 is a software switch that works as egress to
deliver packets to VM 2. When VM 2 sends packets to Container 1 in the opposite direction, S2
becomes the ingress switch that performs traffic splitting, and S1 becomes the egress switch. Note
that the use of software switches for traffic splitting is prevalent, including Google [42], RedHat
OpenStack [70], Alibaba [49], and LINE [3, 41].
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Types. Various software switches have been proposed [89]. OVS [64], a popular open-source
software switch, is the de facto standard. It is widely deployed in open-source DC solutions such as
OpenStack [59] and Kubernetes [38]. Many papers also regard OVS as the software switch providing
required networking functionalities for DCs (including traffic splitting) and have attempted to
improve various aspects of it, such as scalability, feasibility, and security [22, 28, 69]. Considering
its widespread use, this study uses OVS as the basis for building VALO.
VFP is another software switch that is currently used in Microsoft Azure by supporting var-

ious traffic management schemes, such as traffic limiting, packet filtering, and NAT [29]. Also,
Hoverboard is a software switch used in Google’s DCs to manage large-scale packet processing,
including traffic splitting [24]. Apsara vSwitch forwards packets from VMs inside a host to an
external network in Alibaba Cloud [49]. It allows customization of switch components (e.g., flow
table) to achieve high performance tailored to each tenant. VALE is designed to operate at network
link layer to provide high throughputs in packet delivery [71]. Snabb is a software switch for
network function virtualization and bypasses the kernel networking stack to enhance networking
throughput in packet delivery [61]. These software switches are widely used in DCs and necessitate
accurate and efficient traffic splitting across multiple paths.

2.2 Traffic Splitting
In this subsection, we explain the traffic splitting mechanism. Between source and destination hosts,
DC network topology has multiple paths (set of links and switches) [45, 93]. For each network
connection of multiple packets, traffic splitting selects which paths can transmit the network
connection between two hosts and selects one of them.

Traffic splitting has three characteristics. First, it splits traffic into multiple paths based on path
weights. The software switch is connected to multiple interfaces (as explained in §2.1), and each
interface corresponds to a distinct path in the network topology. So, the software switch distributes
network connections to its interfaces according to these weights. Second, all packets belonging to
the same connection use the same path; otherwise, packets may arrive out of order, leading to poor
throughput and reliability [91]. Third, traffic splitting is done per-packet basis because each switch
receives and processes packets individually.

Fig. 2 shows the traffic splitting mechanism of a switch per packet. When every packet enters a
switch, the switch first performs packet classification (➀ in Fig. 2) to identify the network connection
to which the packet belongs. Then, it checks the paths (switch’s attached interfaces) that can deliver
the packet from the source to the destination hosts. Based on the identified network connection
for the packet (connection ID), the switch performs path selection (➁). We explain the packet
classification and path selection in detail.

2.2.1 Packet classification. To get a network connection ID from an incoming packet, a hashing
algorithm, such as CRC [1], is used. The 5-tuple values from the packet header (i.e., source IP address,
destination IP address, source port number, destination port number, and transport protocol) are
used as the key inputs for the hashing algorithm. The result of the hashing algorithm is a network
connection identifier (ID), a unique value for each network connection. Also, pre-processing can
be used before the hashing to decrease the length of key values. For example, by applying bitwise
operations (e.g., XOR) to 5-tuple values, the key length can be decreased. However, it is known that
this pre-processing step does not affect the performance of traffic splitting [91].
Hash functions are lightweight in identifying network connection IDs but can result in hash

collision or polarization. This means that different network connections, each with distinct 5-
tuple values, might produce identical IDs, which reduces the accuracy. But, this issue has been
explored and addressed in other studies [43, 83, 91] by significantly reducing the hash collisions.
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Our experiments show that hash collisions are controlled within 0.01% on real-world traces (details
in §6). So hash collision is not the main concern in this study.

2.2.2 Path selection. With the network connection ID, traffic splitting selects a path for the packet.
For the path selection (➁ in Fig. 2), existing studies and implementations are categorized into four
techniques: 1) random, 2) weighted round-robin (WRR), 3) weighted cost multipathing (WCMP),
and 4) scoring. Note that these four techniques are state-of-the-art and are used in both existing
hardware and software switches [6, 7, 40, 93].

Random. Random technique [40] is one of the widely used techniques in many traffic splitting
implementations, such as equal-cost multipath routing (ECMP) [37, 40], due to its simplicity.
Specifically, random technique selects a path with a random distribution. So, a path is selected
randomly. Generally, all packets of the connection go to the chosen path to avoid the out-of-order
problem that reduces network throughputs of TCP [91]. Random technique typically uses either
specific bit values from 5-tuple values as its random seed or a hashing to generate random values
for choosing the path (e.g., path ID) [9]. The subsequent packets are assigned to the same path
because the packets of the same network connection have identical 5-tuple values. This technique
is relatively simple in path selection (O(1) of time complexity). However, the random technique is
unable to accurately maintain path weights, due to its inherent randomness.

WRR. WRR [6] is the representative technique in supporting path weights. Fig. 3a shows WRR
technique that assigns network connections to each path sequentially while considering path
weights. Specifically, given the network connection ID of a packet, WRR initially checks whether
the connection ID has been processed before. It looks up a table called “routing result cache” that
stores previously processed network connection IDs and their assigned paths. If it matches, WRR
sends the packet to the stored path in the table.

If not, WRR determines the path for the network connection by the “weighted multipath table.”
This table has entries for every path, and the number of entries is proportional to weights. For
example, in Fig. 3a, path weights for three paths (Path 1, 2, and 3) are 4:3:2, and the numbers of
entries for paths are four, three, and two. The path weights of WRR should be integer values since
the weights represent the number of entries, which is an integer. WRR also has “position pointer”
that points out the path next to be assigned for the new network connection ID. So, WRR assigns
the path that the position pointer indicates. The position pointer then advances to the next entry.

WRR needs to manage the routing result cache, weighted multipath table, and position pointer. It
looks up tables, which results in O(𝑛) complexity when the number of table entries is 𝑛. In addition,
whenever path weights change, WRR should flush the table entries, which generates additional
latency. Furthermore, memory usage from the weighted multipath table increases with the size of
the weight and available paths because WRR replicates table entries for the given path weights.
When the sum of path weights gets large across multiple paths and servers in DC, this replication
leads to significant memory consumption.
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WCMP. WCMP [93] aims to reduce the high memory usage associated with WRR. The high
memory consumption is because of creating multiple entries for each path in the weighted multipath
table as explained above. In WRR, the number of entries for each path is equivalent to its path
weight. So, to reduce the memory consumption of the table entries, WCMP sets the maximum
number of table entries (𝑇 ). Then, it modifies the given path weights to become equal to or less
than 𝑇 . This results in the total number of table entries being equal to or less than 𝑇 . Similar to
WRR, the path weights of WCMP are integer values.

Fig. 3b shows an example where 𝑇 is 5 and initial weights are 4:3:2 for Path 1, 2, and 3. The
weights are then proportionally reduced to 2:2:1 because 𝑇 is 5. This modification of weights
reduces the table size but distorts the original weights. Path 2 and 3 are given weights of 3:2, but
the modification makes the weights into 2:1. This distortion can lead to inaccuracy.

Also, WCMP reduces the lookup overhead on the routing result cache of WRR by using a modulo
operation. For each packet, network connection ID % 𝑇 is calculated and simply used as an index
on the weighted multipath table. So, WCMP finds the table entry of the weighted multipath table
without looking up the routing result cache. In summary, WCMP reduces memory usage and lookup
overhead, but modifying path weights and omitting position pointer can compromise accuracy.
Scoring. Scoring [7] tries to reduce the complexity of path selection. Fig. 3c shows scoring

technique that uses an additional hash function for path selection [9]. The connection ID and path
ID become the inputs for the hash function. For example, in Fig. 3c, the hash function receives a key
(connection ID, path ID). Then, for each path, the hash function generates a random value, which
we refer to as “HP-value” (0.4, 0.2, and 0.3 in Fig. 3c). Scoring then takes path weights into account
by computing “scores” by multiplying each HP-value by its path weight (4, 3, and 2), yielding scores
of 1.6, 0.6, and 0.6. The path with the highest score (Path 1 in Fig. 3c) gets selected. In summary,
scoring chooses a path by a random value for a given connection ID but also considers path weights.
Scoring requires no table structures and only needs a hashing algorithm and multiplications, thus
exhibiting O(1) complexity for a fixed number of paths. This is much less complex than WRR. Due
to its reduced complexity, de facto software switches (e.g., OVS) utilize scoring [7].

2.2.3 Relationship between traffic splitting and weight determination. Traffic splitting determines
the number of connections per path based on path weights. It works with weight determination (as
shown in Fig. 2) that decides and updates path weights based on network congestion and failures.
For example, Google [42] and Microsoft Azure [56] utilize SDN controllers to detect network
congestion and determine the path weights for each switch according to the congestion. SDN
controllers [2, 8] also provide weight determination functionalities by detecting network congestion
and failures. Also, some studies [36, 45] update path weights by having software switches measure
the round-trip time of packets (e.g., packet probing). As these switches can detect transmission
delays, they update the weights without the need for external SDN controllers. These weight
determination techniques provide the path weights used by traffic splitting.
Broadly, the use of traffic splitting and weight determination together to enable multiple paths

for network communication is called multipath routing (or traffic load balancing). Many studies in
this area assume that existing traffic splitting techniques operate accurately and efficiently, focusing
primarily on optimizing weight updates [45, 85, 93]. However, in the next section, we reveal that
traffic splitting itself poses significant challenges, making multipath routing far from ideal.

3 Motivating Experiments
This section presents the traffic splitting challenges with motivating experiments. We first explain
our setup (§3.1) and then results (§3.2–§3.4). Lastly, we summarize the experiment results (§3.5).
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3.1 Experiment Setup
Comparing techniques and metrics. Unless stated otherwise, we use the same experiment setup
and methods throughout this paper. We compare four traffic splitting techniques with different path
selection methods: random, WRR, WCMP, and scoring. The four techniques use the Jenkins hash
function for the hashing of the packet classification step because it results in low hash collision
rates (please refer to §6). We implement the random, WRR, and WCMP techniques into OVS [10].
Also, we utilize the scoring technique in OVS for experiments. We evaluate the following aspects:
• Accuracy: We present accuracy by measuring error rates from traffic splitting, which are
discrepancies in the number of connections assigned to paths [43, 91]. Here, we measure the
mean absolute percentage error (MAPE), a widely adoptedmetric for quantifying the discrepancy
between observed and ideal performance [50, 53, 92]. For each trial, we calculate MAPE across
all paths as Eq. (1). When a trial involves 𝑛 paths, for the 𝑖-th path, we get the percentage
error between 1) 𝐶𝑖 , the number of connections that should be assigned based on path weight,
and 2) 𝐶𝑖 , the actual number of connections assigned. The MAPE for each trial is the average
percentage error of 𝑛 paths. Note that MAPE can exceed 100% when |𝐶𝑖 −𝐶𝑖 | is greater than 𝐶𝑖 ,
meaning the error is significantly large. We conduct 200 trials and present the average value
from the trials.

𝑀𝐴𝑃𝐸 = 100
𝑛

×∑𝑛
𝑖=1

|𝐶𝑖−𝐶𝑖 |
𝐶𝑖

(1)

• Resource-efficiency: We measure CPU cycle and latency of traffic splitting in software switches.
Both metrics are measured per packet, and their average values from 200 trials are presented.
The reason why we measure per packet is because traffic splitting occurs per packet (§2.2).
Also, since the number of packets per connection is different, measuring per connection makes
differences from packet counts rather than traffic splitting techniques.

• DC networking performance: As DC networking performance, we compare flow completion
time (FCT) across four key DC workloads.
Topology and measurement methods. We build an experiment topology using Mininet [47]

that emulates software switches, servers, and hosts using OVS and containers. The topology runs
on a physical machine of Intel Xeon E5-2600 CPUs (24 cores) and 64 GB memory. The switches and
hosts are linked via veth interface. Also, each link’s bandwidth capacity is set to 1000 Mbps.
For accuracy and resource-efficiency experiments, we use a two-tier topology (Fig. 4) that is

commonly used [11, 78]. We create two servers, each having one host (container). Each host is
connected to an edge switch (E1 and E2 in Fig. 4), which is a software switch located on its server. We
vary the number of paths between two servers from two to eight, which is a common deployment
scenario for public cloud [30]. According to the number of paths, the number of core switches
changes. The physical machine emulates all components of the topology, and each host and switch
uses 2 CPU cores. Note that this configuration is used in the existing studies [73, 87].
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We measure the performance at edge switches that perform traffic splitting. We instrument
OVS in order to track 1) the number of connections assigned to each path and 2) the elapsed time
that the switch takes to perform traffic splitting for each packet to measure accuracy and latency,
respectively. Also, CPU usage is measured as the number of CPU cycles required for traffic splitting
using clock() function. We report the average number of CPU cycles consumed per core.
For the DC networking experiments, we create 32 hosts to generate network connections for

DC service workloads, as like existing studies [35, 45]. The CPU cores of the machine are evenly
divided into the switches and hosts in order to make sure that CPU is not a bottleneck for the
experiments [27, 47]. FCT values are measured from the 32 hosts by traffic generator [15].
Experiment parameters. Path weights are parameters specified by external weight determi-

nation techniques, which consider the remaining bandwidth and congestion degree of each path
[45, 46, 65]. We also observe that real-world DC traces show weights typically range from 1–100
[14, 63, 86], so in our experiments, we randomly select path weights from this range. Actually, we
experiment with weight values beyond this range, and the results show a similar tendency. So, we
omit them. Furthermore, we apply the selected weights identically to all traffic splitting techniques,
ensuring a fair comparison. Similar to related studies [83, 93], bandwidth capacity of paths is set in
proportion to weights. For instance, if path weights are 2:3, the bandwidth capacities of paths are
set to 2:3.

We repeat experiment multiple trials to obtain reliable results. Specifically, the experiments for
accuracy and resource efficiency are repeated for 200 trials. In each trial, we change path weights.
DC networking performance experiments are conducted for 10 trials. On average, the accuracy and
resource efficiency experiments take 11 s per trial, whereas the DC networking experiments 336 s
per trial. So, the total running times are 37 min and 56 min, respectively. Note that the numbers
of experiment trials are comparable or higher than previous studies that conducted 3–10 trials
[45, 51, 75]. All graphs show average values.

Workloads. All experiments use real-world traces. For accuracy and resource-efficiency experi-
ments, we use two traces: CAIDA and ClassBench. CAIDA provides anonymized traces from DCs
and Internet [4, 5]. ClassBench generates 5-tuple traces based on IPv4 prefixes [54]. We randomly
sample 20K network connections from each trace, so a total of 40K connections for experiments.
Note that the two datasets are publicly available and are among the most widely used traces [55, 95].
We also increase the number of connections up to 120K in §5, which we believe provides a sufficient
amount for measurement. For DC networking experiments, we generate network connections
using four DC workload traces: web search [14], data mining [32], distributed training of deep
learning models (deep learning) [84], and in-memory cache from Twitter service [86]. For deep
learning, we use a traffic trace from distributed training with four GPU workers and four parameter
servers. All network connections are generated using an open-source traffic generator tool [15].

3.2 Accuracy
Fig. 5a shows the results of accuracy experiments by MAPE (y-axis) per traffic splitting techniques
(x-axis). Each bar presents an average value. The technique with the lowest error is WRR, at 2.9%.
This is because WRR maintains the routing result cache and weighted multipath table for accuracy.
On the other hand, random shows the highest error (worst accuracy, 138%), and the result implies
that it cannot consider weights properly. Also, WCMP and scoring show comparably high errors,
at 21.9% and 44.1% each, as they take path weights but distort the weights to reduce memory usage
or computation complexity as explained in §2.2.2.
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Fig. 6. DC networking performance.

3.3 Resource-efficiency
Fig. 5b shows the average CPU usage measured by the total amount of CPU cycles required for
traffic splitting per packet. Among four techniques, WRR consumes the most, followed by scoring,
WCMP, and then random. Specifically, WRR exhibits CPU usage that is 20.1×, 18.6×, and 15.7×
higher than random, WCMP, and scoring, respectively. Considering that software switches perform
various functionalities (e.g., overlay networking, packet filtering, address translation, and in-band
telemetry), WRR has a severe problem. Next, Fig. 5c presents the average latency for traffic splitting.
Similar to CPU usage, WRR also requires the longest time for traffic splitting—19.8 𝜇s. Because
WRR keeps path weights in its structures and requires table lookups, it inevitably incurs high
overheads. WRR takes 14.8×, 13.7×, and 11.5× longer than random, WCMP, and scoring.

3.4 Impact on DC Networking Performance
We measure FCT values of network connections for web search, data mining, deep learning, and
in-memory cache from Twitter. To highlight the impact of the traffic splitting techniques, we define
an ideal scenario where software switches perform perfectly accurate traffic splitting. Specifically,
before running experiments, we assign network connections to paths based on pre-defined weights.
This is possible because we can know from the DC traces the number of connections and their
arrival time in advance. Then, during experiments, the switch references a lookup table that maps
each connection ID to its assigned path. However, this ideal scenario is infeasible in real-world,
where connections cannot be known in advance and link congestion and failures cannot be handled
with this scenario [83, 91, 93].

We normalize the measured FCT values of traffic splitting techniques against the baseline and
present the values in Fig. 6. So, the subfigures in Fig. 6 represent the results for four different DC
workloads using four traffic splitting techniques. The increase in FCT is highest with random—2.1×
on average, peaking at ∼2.7× (in-memory cache). Scoring follows with an average increase of 1.5×
and a peak of ∼2.1× (in-memory cache). WCMP and WRR show increases of 1.5× and 1.5× on
average, with peaks of ∼1.8× and ∼1.6×, respectively, for in-memory cache. The results clearly
show that existing traffic splitting performance is quite suboptimal.
In addition, we find that workloads exhibit different tendencies over techniques. For example,

in the web search workload (Fig. 6a), scoring is comparable to WRR, whereas in the in-memory
cache (Fig. 6d), scoring is worse than WRR (by 28%). This is because each workload has a different
amount of data to transfer: in-memory cache has a median data size of 200 KB, while web search
has 80 MB. FCT is influenced by a few factors, such as traffic splitting, queueing delay, and data
transmission delay [63, 81, 93]. For the web search workload, queueing delay and data transmission
become dominant [80, 88]. So, traffic splitting techniques become comparable.
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3.5 Summary
In summary, random technique is resource-efficient, but it cannot take weights into account, which
makes it unsuitable for use in DCs. WRR shows the highest accuracy among the four, but it is
significantly resource-inefficient due to its complex structures and operations. WCMP also shows
better resource-efficiency than WRR, but it presents poor accuracy due to the distortion of weights.
Scoring is resource-efficient but exhibits poor accuracy even though it derives scores in path
selection by multiplying path weights by HP-values. Because all techniques have either accuracy or
resource-efficiency issues, we present VALO by exploring the design space to improve the accuracy
of the scoring technique to consider both accuracy and resource-efficiency.

4 VALO Design
We first analyze the existing scoring technique to identify reasons for inaccuracies (§4.1). Then,
we introduce the VALO workflow, with its novel parameter, VALO gravity, aimed at enhancing
accuracy. Also, we develop resource-efficient calculation method for VALO gravity (§4.2).

4.1 Scoring Analysis with Modeling
Score graph. Here, we introduce the concept of a “score graph,” which counts the number of
network connections on each path to identify reasons for inaccuracies in the existing scoring
technique. When traffic splitting is performed over 𝑛 paths (i.e., 𝑛 number of next hops from the
software switch), we define a score graph (𝐼𝑛) to model and estimate the outstanding network
connections as the set of “points.” We use the following notations. For each path 𝑖 (1 ≤ 𝑖 ≤ 𝑛), a
variable for path weight is represented as 𝑥𝑖 . For 𝑗-th outstanding network connection, the score
value for path 𝑖 is denoted 𝑠𝑖 𝑗 . Each axis 𝑖 (e.g., axis 1, axis 2, and axis 3 in Fig. 7a) represents
the values in 𝑆𝑖 where 𝑆𝑖 =

⋃
𝑗 𝑠𝑖 𝑗 . Then, the point that represents the 𝑗-th network connection is

defined as (𝑠1𝑗 , 𝑠2𝑗 , · · · , 𝑠𝑛𝑗 ).
For example, the score graph of the 𝑗-th network connection over three paths (𝐼3) consists of the

points represented by (𝑠1𝑗 , 𝑠2𝑗 , 𝑠3𝑗 ) in Fig. 7a over axis 1, axis 2, and axis 3. Each axis represents
the values in 𝑆1, 𝑆2, and 𝑆3. Assume that 𝑘-th connection exists, and its HP-values are 0.4, 0.2, and
0.3 for three paths. When 𝑥1, 𝑥2, and 𝑥3 are 4, 3, and 2, the 𝑠1𝑘 , 𝑠2𝑘 , and 𝑠3𝑘 are 1.6, 0.6, and 0.6,
respectively. Then, the connection is represented by a point (1.6, 0.6, 0.6) on 𝐼3.
As another example, Fig. 7b shows the score graph for two paths (𝐼2). The points of the graph

are defined as (𝑠1𝑗 , 𝑠2𝑗 ). The graph in Fig. 7b has two axes: axis 1 represents 𝑆1 values of network
connections and axis 2 for 𝑆2 values. If a 𝑘-th network connection whose HP-values are 0.2 and 0.5
exists, and 𝑥1 and 𝑥2 are 4 and 3, 𝑠1𝑘 and 𝑠2𝑘 are 0.8 and 1.5. So, the connection is represented by
the point (0.8, 1.5) on 𝐼2.
In this way, 𝐼𝑛 can represent scores of all outstanding network connections. To simplify the

modeling, we assume that the range of HP-values on each axis is from 0 to 1. If the actual HP-value
from hash functions exceeds 1 (e.g., 0–10), we scale it down using an appropriate ratio (e.g., by
dividing the value by 10 for the case). Then, 𝑠𝑖 𝑗 is calculated by multiplying 𝑥𝑖 by HP-value. So, the
range of 𝑆𝑖 (each axis for path 𝑖) is from 0 to 𝑥𝑖 .

Next, per network connection, scoring selects the path with the highest 𝑠𝑖 𝑗 over all paths. In the
two paths graph (Fig. 7b), suppose a point (0.8, 1.5) in the blue-colored area (denoted as 𝑈2,2 in
Fig. 7b). From the point, 𝑠2𝑗 (1.5) is higher than 𝑠1𝑗 (0.8), so the network connection of the point is
directed to path 2. Also, in the three paths graph (Fig. 7a), consider an arbitrary point (𝑠1𝑗 , 𝑠2𝑗 , 𝑠3𝑗 ).
The network connection of the point is directed to path 1 when 𝑠1𝑗 is higher than 𝑠2𝑗 , and also,
𝑠1𝑗 is higher than 𝑠3𝑗 . The point exists in the green-colored area (denoted as 𝑈3,1 in Fig. 7a). By
generalizing these examples, we define 𝑈𝑛,𝑖 as the set of points on the graph 𝐼𝑛 that are directed to
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path 𝑖 . The definition is as follows:

𝑈𝑛,𝑖 =
⋃

𝑗 {𝑠𝑖 𝑗 ≥ 𝑠1𝑗
⋂
𝑠𝑖 𝑗 ≥ 𝑠2𝑗

⋂ · · ·⋂ 𝑠𝑖 𝑗 ≥ 𝑠𝑛𝑗 } =
⋃

𝑗 {
⋂

1≤𝑚≤𝑛 {𝑠𝑖 𝑗 ≥ 𝑠𝑚𝑗 }} (2)

The union of𝑈𝑖 on 𝑛 paths is defined as the score graph (𝐼𝑛).

𝐼𝑛 =
⋃

1≤𝑖≤𝑛𝑈𝑛,𝑖 (3)

Number of connections per path. Based on the defined𝑈𝑛,𝑖 and 𝐼𝑛 , VALO estimates the number
of points directed to each path. For path 𝑖 , the number of points existing in𝑈𝑛,𝑖 is counted, as the
points in 𝑈𝑛,𝑖 are directed to path 𝑖 . However, individually counting the points is challenging and
severely inefficient due to the fact that 5-tuple values that include IP addresses and port numbers
can theoretically allow for trillions of distinct network connections. So, instead of counting each
point, we measure the “volume” of𝑈𝑛,𝑖 , denoted as 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ).
Values in 𝑆𝑖 are uniformly distributed along each axis. This is valid for the following reasons.

First, existing hash functions are designed to distribute hash values (HP-values) uniformly to avoid
collisions between them [25]. So, because 𝑆𝑖 is the multiplication of constants (weights ×HP-values),
it follows a uniform distribution. Note that this aligns with common practices when considering
hash output [26]. We also test the representative hash functions and select the one whose output is
most similar to the uniform distribution (see details in §6). So, instead of counting individual points,
VALO calculates 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ). Then, the number of network connections is proportional to 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ).

Validation.We compare 1) path weights and 2) the ratio between 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ). We experiment traffic
splitting by running 20K network connections of the CAIDA dataset with the same experiment
setup in §3.1. We test two cases: 1) for two paths of 𝑥1 and 𝑥2 are 4 and 3 (Fig. 7b) and 2) for three
paths of 𝑥1, 𝑥2, and 𝑥3 are 4, 3, and 2 (Fig. 7a).
In the case of two paths (𝐼2), the paths transmit 12634 and 7466 connections, which results

in a ratio of 5:2.97. This quite differs from the assigned path weights, 4:3. We compute 𝑣𝑜𝑙 (𝑈2,1)
and 𝑣𝑜𝑙 (𝑈2,2) through surface integral, obtaining a ratio of 5:3. The volume ratio is close to the
actual ratio in which the network connections are divided. For the three paths (𝐼3), the experiment
results show that the connections are divided into 5.05:2.81:1 ratio (11400, 6342, and 2258). This
seriously deviates from the assigned path weights of 4:3:2. But the ratio of 𝑣𝑜𝑙 (𝑈3,1), 𝑣𝑜𝑙 (𝑈3,2), and
𝑣𝑜𝑙 (𝑈3,3) are 5.13:2.88:1 that closely aligns with the measured ratio of the connections. The above
experiments show that although the scoring technique deviates the connection distribution from
the path weight, the ratio of 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) conforms closely to the actual division ratio.

4.2 VALOWorkflow and VALO Gravity
Based on our analysis, we introduce a new parameter—“VALO gravity”—to address the inaccuracy
of scoring. VALO gravity makes 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) to align with the ratio of given path weights.

4.2.1 VALO workflow. Fig. 8 explains the VALO workflow and the role of VALO gravity in compar-
ison with the scoring technique. When external network controllers or DC operators enter path
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weight values to software switches, the existing scoring technique (Fig. 8a) ly uses them. In contrast,
VALO calculates and utilizes VALO gravity values as new parameters to calculate scores (Fig. 8b).
Whenever path weights are updated, VALO calculates the VALO gravity values for paths. VALO
gravity values are determined to ensure that the ratio of volumes, 𝑣𝑜𝑙 (𝑈𝑛,1):𝑣𝑜𝑙 (𝑈𝑛,2):· · · :𝑣𝑜𝑙 (𝑈𝑛,𝑛),
is close to the ratio of path weights. Then, VALO calculates the score by multiplying the HP-value
by the VALO gravity instead of the given weight. It then selects the path of the highest score.

4.2.2 Resource-efficient calculation of VALO gravity. We explain the calculation method of VALO
gravity by 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) with weight variable, 𝑥𝑖 . We can use surface and volume integrals to calculate
𝑣𝑜𝑙 (𝑈𝑛,𝑖 ). However, as the number of paths increases, the score graph increases the number of its
axes and dimensions, and the calculation complexity becomes extremely high. So instead of the
integral, we devise an efficient method to calculate 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ).
𝒗𝒐𝒍 (𝑼𝒏,𝒊) calculation. Fig. 9a shows a score graph of two paths, 𝐼2: axis 1 and axis 2 represent

𝑆1 and 𝑆2 values, respectively. Also, the range for axis 1 is 0–𝑥1, and for axis 2 is 0–𝑥2 as explained
in §4.1. We assume that 𝑥1 is greater than 𝑥2, so the length of the side on axis 1 is longer in this
example. The score graph is constructed by the union of𝑈2,1 and𝑈2,2. Specifically,𝑈2,1 represents
𝑠1𝑗 ≥ 𝑠2𝑗 , and 𝑈2,2 represents 𝑠1𝑗 ≤ 𝑠2𝑗 . So, 𝑈2,1 (marked green) and 𝑈2,2 (marked blue) are divided
by the line of 𝑠1𝑗 = 𝑠2𝑗 (red line). Next, we calculate 𝑣𝑜𝑙 (𝑈2,𝑖 ). The area of 𝑈2,1 is subdivided into
two: triangle (➊ in Fig. 9a) and rectangle (➋). So, 𝑣𝑜𝑙 (𝑈2,1) is calculated as Eq. (4a). Also, 𝑣𝑜𝑙 (𝑈2,2)
(blue triangle) is calculated as Eq. (4b).

𝑣𝑜𝑙 (𝑈2,1) =
1
2
𝑥22 +

(
𝑥1𝑥2 − 𝑥22

)
(4a) 𝑣𝑜𝑙 (𝑈2,2) =

1
2
𝑥22 (4b)

Next, Fig. 9b, we consider 𝐼3 with 𝑥1, 𝑥2, and 𝑥3. 𝐼3 is the union of𝑈3,1,𝑈3,2, and𝑈3,3. Axes 1, 2,
and 3 represent 𝑆1, 𝑆2, and 𝑆3 values, respectively. Also, the ranges for axes 1, 2, and 3 are 0–𝑥1, 0–𝑥2,
and 0–𝑥3. Fig. 9b shows the 𝑣𝑜𝑙 (𝑈3,1) area by subdividing the area into three (➌–➎). The volumes
of ➌–➎ are calculated in a manner similar to the 𝐼2 example and result in Eq. (5a). Specifically, ➌ is
one-third the volume of a cube with length 𝑥3, ➍ is half the volume obtained by subtracting a cube
with length 𝑥3 from a cuboid with lengths 𝑥2, 𝑥2, 𝑥3, and ➎ is the volume obtained by subtracting a
cuboid with lengths 𝑥2, 𝑥2, 𝑥3 from a cuboid with lengths 𝑥1, 𝑥2, 𝑥3. Following the similar method,
𝑣𝑜𝑙 (𝑈3,2) and 𝑣𝑜𝑙 (𝑈3,3) are calculated as Eq. (5b) and Eq. (5c), respectively.

𝑣𝑜𝑙 (𝑈3,1)=
1
3
𝑥33+

1
2
(
𝑥22𝑥3 − 𝑥33

)
+
(
𝑥1𝑥2𝑥3 − 𝑥22𝑥3

)
(5a)

𝑣𝑜𝑙 (𝑈3,2) =
1
3
𝑥33 +

1
2
(
𝑥22𝑥3 − 𝑥33

)
(5b) 𝑣𝑜𝑙 (𝑈3,3) =

1
3
𝑥33 (5c)

Through observation of the above examples, we notice regularities in 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ). For example,
when 𝑛 paths exist, the first term of the equation is divided by 1

𝑛
, the second term by 1

𝑛−1 , and so
on. So, we generalize 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) as follows:

𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) =
∑𝑛

𝑚=𝑖
1
𝑚

(
𝑋𝑛,𝑚 − 𝑋𝑛,𝑚+1

)
, 𝑋𝑛,𝑚 =


𝑥𝑚𝑚 𝑥𝑚+1 . . . 𝑥𝑛 𝑛 > 𝑚

𝑥𝑛𝑛 𝑛 =𝑚

0 𝑛 < 𝑚

(6)

Proof of correctness.We prove the correctness of Eq. (6) by mathematical induction. When
𝑛=2 (base case),1 𝑣𝑜𝑙 (𝑈2,𝑖 ) is

∑2
𝑚=𝑖

1
𝑚

(
𝑋2,𝑚 − 𝑋2,𝑚+1

)
. Expanding this, 𝑣𝑜𝑙 (𝑈2,1) and 𝑣𝑜𝑙 (𝑈2,2) are

identical to Eq. (4), confirming the correctness for 𝑛 = 2. For the inductive hypothesis, assume that

1At least two paths are required for traffic splitting.
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Eq. (6) holds for 𝑛 = 𝑘 such that 𝑣𝑜𝑙 (𝑈𝑘,𝑖 ) =
∑𝑘

𝑚=𝑖
1
𝑚

(
𝑋𝑘,𝑚 − 𝑋𝑘,𝑚+1

)
. Next, we examine whether

the equation holds for 𝑛 = 𝑘 + 1. Eq. (6) for 𝑛 = 𝑘 + 1 can be divided into two parts:

𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) =
∑𝑘+1

𝑚=𝑖
1
𝑚

(
𝑋𝑘+1,𝑚 − 𝑋𝑘+1,𝑚+1

)
=

∑𝑘
𝑚=𝑖

1
𝑚

(
𝑋𝑘+1,𝑚 − 𝑋𝑘+1,𝑚+1

)
+ 1

𝑘+1
(
𝑋𝑘+1,𝑘+1 − 𝑋𝑘+1,𝑘+2

) (7)

For the first part,
∑𝑘

𝑚=𝑖
1
𝑚

(
𝑋𝑘+1,𝑚 − 𝑋𝑘+1,𝑚+1

)
, 𝑋𝑘+1,𝑚 can be expressed as 𝑋𝑘+1,𝑚 = 𝑥𝑚𝑚𝑥𝑚+1 . . . 𝑥𝑘

𝑥𝑘+1= 𝑥𝑘+1
(
𝑥𝑚𝑚𝑥𝑚+1 . . . 𝑥𝑘

)
= 𝑥𝑘+1𝑋𝑘,𝑚 . Similarly, 𝑋𝑘+1,𝑚+1 can be expressed as 1) 𝑥𝑘+1𝑋𝑘,𝑚+1 for

𝑚 < 𝑘 and 2) 𝑥𝑘+1
𝑘+1 for𝑚 = 𝑘 . By expanding the equation, the first part becomes 𝑥𝑘+1𝑣𝑜𝑙 (𝑈𝑘,𝑖 ) −

1
𝑘
𝑥𝑘+1
𝑘+1 . For the second part, 1

𝑘+1
(
𝑋𝑘+1,𝑘+1 − 𝑋𝑘+1,𝑘+2

)
, we note that 𝑋𝑘+1,𝑘+2 is zero and 𝑋𝑘+1,𝑘+1 is

𝑥𝑘+1
𝑘+1 according to Eq. (6). So, it simplifies to 1

𝑘+1𝑥
𝑘+1
𝑘+1 . Putting both parts together, 𝑣𝑜𝑙

(
𝑈𝑘+1,𝑖

)
=

𝑥𝑘+1𝑣𝑜𝑙
(
𝑈𝑘,𝑖

)
+
( 1
𝑘+1 −

1
𝑘

)
𝑥𝑘+1
𝑘+1 .

We show the correctness of the equation as follows. As defined in Eq. (2), 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) is the
volume for the set of points in the score graph 𝐼𝑘+1 for 𝑘 + 1 paths (axes), where the score for the
𝑖-th path (denoted as 𝑆𝑖 ) is the highest between paths, so leading to the selection of the 𝑖-th path.
Note that, in the definition of the score graph, the range of 𝑆𝑖 is 0–𝑥𝑖 (§4.1). For the calculation, the
axes are indexed in the order 𝑥1 ≥ 𝑥2 ≥ · · · ≥ 𝑥𝑖 ≥ · · · ≥ 𝑥𝑘+1.2

Eq. (8) represents 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) calculated by integral over (𝑘 +1)-dimensional 𝐼𝑘+1 by specifying the
score range of each axis within the integral. Specifically, by definition in Eq. (2), points (connections)
belonging to 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) can have 𝑆𝑖 value from the range of 0–𝑥𝑖 for the 𝑖-th axis, which corresponds
to

∫ 𝑥𝑖

0 𝑑𝑆𝑖 in Eq. (8). The other axes (e.g., (𝑖 − 1)-th axis) have ranges of 0–𝑆𝑖 since 𝑆𝑖 is the highest
among the axes, as shown as

∫ 𝑆𝑖

0 𝑑𝑆𝑖−1. Note that from the (𝑖 +1)-th to (𝑘 +1)-th axes, upper integral
limits are given by min, such as min(𝑆𝑖 , 𝑥𝑖+1), because 𝑥𝑖+1 can be smaller than 𝑆𝑖 .

𝑣𝑜𝑙
(
𝑈𝑘+1,𝑖

)
=
∫ 𝑥𝑖

0

∫ 𝑆𝑖

0 · · ·
∫ 𝑆𝑖

0

∫ min(𝑆𝑖 ,𝑥𝑖+1 )
0 · · ·

∫ min(𝑆𝑖 ,𝑥𝑘+1 )
0 𝑑𝑆𝑘+1 · · ·𝑑𝑆𝑖+1𝑑𝑆𝑖−1 · · ·𝑑𝑆1𝑑𝑆𝑖 (8)

Similarly, 𝑣𝑜𝑙 (𝑈𝑘,𝑖 ) is as follows.

𝑣𝑜𝑙
(
𝑈𝑘,𝑖

)
=
∫ 𝑥𝑖

0

∫ 𝑆𝑖

0 · · ·
∫ 𝑆𝑖

0

∫ min(𝑆𝑖 ,𝑥𝑖+1 )
0 · · ·

∫ min(𝑆𝑖 ,𝑥𝑘 )
0 𝑑𝑆𝑘 · · ·𝑑𝑆𝑖+1𝑑𝑆𝑖−1 · · ·𝑑𝑆1𝑑𝑆𝑖 (9)

Next, we expand 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) by dividing the range of 𝑆𝑖 , 0–𝑥𝑖 , in Eq. (8) into two parts: 1) 0–𝑥𝑘+1
and 2) 𝑥𝑘+1–𝑥𝑖 . In the 𝑆𝑖 range of 0–𝑥𝑘+1,min(𝑆𝑖 , 𝑥𝑖+1) is 𝑆𝑖 . In the 𝑆𝑖 range of 𝑥𝑘+1–𝑥𝑖 ,min(𝑆𝑖 , 𝑥𝑘+1)
is 𝑥𝑘+1. The following equation demonstrates the expansion of 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ):

𝑣𝑜𝑙
(
𝑈𝑘+1,𝑖

)
=
∫ 𝑥𝑘+1
0

∫ 𝑆𝑖

0 · · ·
∫ min(𝑆𝑖 ,𝑥𝑘+1 )
0 𝑑𝑆𝑘+1 · · ·𝑑𝑆𝑖︸                                           ︷︷                                           ︸
(range 0–𝑥𝑘+1)

+
∫ 𝑥𝑖

𝑥𝑘+1

∫ 𝑆𝑖

0 · · ·
∫ min(𝑆𝑖 ,𝑥𝑘+1 )
0 𝑑𝑆𝑘+1 · · ·𝑑𝑆𝑖︸                                          ︷︷                                          ︸
(range 𝑥𝑘+1–𝑥𝑖 )

=
∫ 𝑥𝑘+1
0

(
𝑆𝑖
)𝑘
𝑑𝑆𝑖 +

∫ 𝑥𝑖

𝑥𝑘+1

∫ 𝑆𝑖

0 · · ·
∫ 𝑆𝑖

0

∫ 𝑥𝑘+1
0 𝑑𝑆𝑘+1︸       ︷︷       ︸

=𝑥𝑘+1

· · ·𝑑𝑆𝑖

=
∫ 𝑥𝑘+1
0 𝑆𝑘𝑖 𝑑𝑆𝑖 + 𝑥𝑘+1

∫ 𝑥𝑖

𝑥𝑘+1

∫ 𝑆𝑖

0 · · ·
∫ min(𝑆𝑖 ,𝑥𝑘 )
0 𝑑𝑆𝑘 · · ·𝑑𝑆𝑖

=
∫ 𝑥𝑘+1
0 𝑆𝑘𝑖 𝑑𝑆𝑖 + 𝑥𝑘+1

(∫ 𝑥𝑖

0 · · · 𝑑𝑆𝑖︸      ︷︷      ︸
= 𝑣𝑜𝑙 (𝑈𝑘,𝑖 )

−
∫ 𝑥𝑘+1
0 · · · 𝑑𝑆𝑖︸         ︷︷         ︸
= 1

𝑘
𝑥𝑘
𝑘+1

)
=
( 1
𝑘+1 −

1
𝑘

)
𝑥𝑘+1
𝑘+1 + 𝑥𝑘+1 𝑣𝑜𝑙 (𝑈𝑘,𝑖 )

(10)

That is, 𝑣𝑜𝑙 (𝑈𝑘+1,𝑖 ) is derived from 𝑣𝑜𝑙 (𝑈𝑘,𝑖 ) which concludes the mathematical induction.

2We just assign indices to the axes of 𝐼𝑘+1 according to the values of 𝑥𝑖 without altering any paths or connections.
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VALO gravity calculation. Based on Eq. (6), we derive the method for calculating VALO gravity.
Eq. (6) for 𝐼𝑛 can be represented by matrix.

𝑣𝑜𝑙 (𝑈𝑛,1)
𝑣𝑜𝑙 (𝑈𝑛,2)
𝑣𝑜𝑙 (𝑈𝑛,3)

...

𝑣𝑜𝑙 (𝑈𝑛,𝑛)


=



1 1
2

1
3 · · · 1

𝑛1
2

1
3 · · · 1

𝑛1
3 · · · 1

𝑛

. . .
...
1
𝑛





1 −1
1 −1

. . .

1 −1
1





𝑋𝑛,1
𝑋𝑛,2
𝑋𝑛,3
...

𝑋𝑛,𝑛


(11)

𝑋𝑛,𝑖 values are calculated by multiplying the inverse matrix to Eq. (11), resulting in Eq. (12).

𝑋𝑛,1
𝑋𝑛,2
𝑋𝑛,3
...

𝑋𝑛,𝑛


=



1 1 1 · · · 1
1 1 · · · 1
1 · · · 1
. . .

...

1





1 −1
2 −2

. . .

(𝑛 − 1) (−𝑛 + 1)
𝑛





𝑣𝑜𝑙 (𝑈𝑛,1)
𝑣𝑜𝑙 (𝑈𝑛,2)
𝑣𝑜𝑙 (𝑈𝑛,3)

...

𝑣𝑜𝑙 (𝑈𝑛,𝑛)


=



𝑣𝑜𝑙 (𝑈𝑛,1) + 𝑣𝑜𝑙 (𝑈𝑛,2) + 𝑣𝑜𝑙 (𝑈𝑛,3) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
2𝑣𝑜𝑙 (𝑈𝑛,2) + 𝑣𝑜𝑙 (𝑈𝑛,3) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)

3𝑣𝑜𝑙 (𝑈𝑛,3) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
...

𝑛𝑣𝑜𝑙 (𝑈𝑛,𝑛)


(12)

From Eq. (12), we aim to obtain 𝑥𝑖 . We find that by dividing 𝑥𝑖 by 𝑥1 (i.e., 𝑥𝑖/𝑥1), it can be simplified
into a form that can be calculated solely by additions and multiplications. The example of 𝑥2/𝑥1 is
the following Eq. (13). We multiply both the numerator and the denominator of 𝑥2/𝑥1 by 𝑥2×· · ·×𝑥𝑛 .
Then, we can substitute 𝑥𝑖 with 𝑋𝑛,𝑖 and 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) using Eq. (6) and Eq. (12), respectively.

𝑥2

𝑥1
=

𝑥22 × · · · × 𝑥𝑛

𝑥1 × 𝑥2 × · · · × 𝑥𝑛
=
𝑋𝑛,2

𝑋𝑛,1
=
2𝑣𝑜𝑙 (𝑈𝑛,2) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
𝑣𝑜𝑙 (𝑈𝑛,1) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)

(13)

We also calculate the ratios 𝑥3/𝑥1 and 𝑥4/𝑥1 similar to 𝑥2/𝑥1 but omit the specific details due
to the page limit. The results are Eq. (14). We generalize them into the ratio 𝑥𝑖/𝑥1 based on the
patterns (mathematical induction) as Eq. (15). Note that Eq. (15) holds only when 𝑖 is greater than 1.
When 𝑖 is 1, 𝑥𝑖/𝑥1 equals 1.

𝑥3

𝑥1
=
𝑋𝑛,2

𝑋𝑛,1
× (𝑋𝑛,3

𝑋𝑛,2
) 1
2 =

𝑥2

𝑥1
× ( 3𝑣𝑜𝑙 (𝑈𝑛,3) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)

2𝑣𝑜𝑙 (𝑈𝑛,2) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
) 1
2

𝑥4

𝑥1
=
𝑋𝑛,2

𝑋𝑛,1
× (𝑋𝑛,3

𝑋𝑛,2
) 1
2 × (𝑋𝑛,4

𝑋𝑛,3
) 1
3 =

𝑥3

𝑥1
× ( 4𝑣𝑜𝑙 (𝑈𝑛,4) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)

3𝑣𝑜𝑙 (𝑈𝑛,3) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
) 1
3

... (14)

𝑥𝑖

𝑥1
=

𝑖∏
𝑘=2

(
𝑘𝑣𝑜𝑙 (𝑈𝑛,𝑘 ) + 𝑣𝑜𝑙 (𝑈𝑛,𝑘+1) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)

(𝑘 − 1)𝑣𝑜𝑙 (𝑈𝑛,𝑘−1) + 𝑣𝑜𝑙 (𝑈𝑛,𝑘 ) + · · · + 𝑣𝑜𝑙 (𝑈𝑛,𝑛)
) 1
𝑘−1 (15)

In order for 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ) to be alignedwith the ratio of givenweights (denoted as𝑤𝑖 ),𝑤𝑖 is substituted
into 𝑣𝑜𝑙 (𝑈𝑛,𝑖 ). Finally, with the substitution, 𝑥𝑖/𝑥1 becomes VALO gravity in Eq. (16).

𝑥𝑖

𝑥1
=

𝑖∏
𝑘=2

( 𝑘𝑤𝑘 +𝑤𝑘+1 + · · · +𝑤𝑛

(𝑘 − 1)𝑤𝑘−1 +𝑤𝑘 + ... +𝑤𝑛

) 1
𝑘−1 (16)

VALO then performs traffic splitting by using these VALO gravity values as its path weights.
Note that VALO calculates VALO gravity using only Eq. (16) when the weights (𝑤𝑖 ) are updated.
We demonstrate its resource efficiency by presenting the scalability of VALO, such as CPU and
memory usage, for increasing connection loads and paths in §5.2.
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Fig. 10. Accuracy evaluation.

5 Evaluation
We implement VALO using OVS (version 2.9.8) on Linux kernel version 5.4.0. The VALOmechanism
is integrated with the OVS routine that installs flow rules for traffic splitting. Our implementation
includes VALO gravity calculation. We believe that VALO can be efficiently integrated with other
software switches as a separate module. We release the VALO implementation in [10].
We compare five different traffic splitting techniques: random, WRR, WCMP, scoring, and

VALO. The techniques are evaluated under a two-tier topology (Fig. 4). We evaluate VALO in
four experiment sets: 1) micro-benchmarks (accuracy and resource-efficiency), 2) the overhead
of weight fluctuations, 3) macro-benchmarks for end-to-end DC networking performance, and
4) the application of VALO on multipath routing. For micro-benchmarks, we measure accuracy
and resource-efficiency. The experiments follow the setups and methods explained in §3.1. In
addition to CPU cycles and latency, whose measurement methods are in §3.1, we also report the
memory consumption of traffic splitting techniques. Memory consumption is measured by the GNU
Time tool [31] that utilizes wait4 system call to obtain memory usage. We vary three experiment
parameters: weight, connection load, and path number as follows.

• Weight: We conduct 200 trials, each with randomly assigned path weights by selecting
integer values from 1 to 100. The other parameters are fixed. For example, the connection
load is fixed at 40K, and the number of paths is four.

• Connection load: The experiments are conducted with varying connection sizes ranging
from 1K to 120K by sampling from CAIDA and ClassBench datasets. The number of paths is
fixed at four, and the path weights are randomly assigned (integer values from 1 to 100).

• Path number: We vary the number of paths from two to eight. The connection load is fixed
at 40K, and each path weight is randomly assigned from 1 to 100.

We also present the overhead and impact of path weight fluctuations by measuring CPU cycles
and latency with similar methods as in our micro-benchmark. For macro-benchmarks, we report the
average and 99th-percentile tail of FCT values for four DC workloads, as described in §3.1. Lastly,
we demonstrate VALO’s application in multipath routing, running VALOwith weight determination
techniques that consider network congestion. The number of experiment trials is similar to §3.1
(200 trials for micro-benchmarks and 10 trials for others), and average values are plotted.

5.1 Accuracy
Weight. Fig. 10a illustrates the errors in traffic splitting, as measured by MAPE (as in §3.2). The
x-axis represents each experiment trial, with a total of 200 trials. In each trial, the accuracy is
measured using the given path weights. The path weights differ between trials. We sort the trial
results by their average MAPE values of the traffic splitting techniques, from smallest to largest.
From the 200 trials, WRR and VALO outperform the other techniques, with each showing 2.5% and
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Fig. 11. Resource-efficiency: CPU usage.
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Fig. 12. Resource-efficiency: latency.
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Fig. 13. Resource-efficiency: memory usage.
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Fig. 14. Impact of weight fluctuations.

2.3% average errors, and 10.5% and 7.3% maximum errors, respectively. Conversely, random, WCMP,
and scoring demonstrate high errors, with averages of 104.2%, 14.1%, and 43%, and maximum errors
of 546.5%, 124.4%, and 57%, respectively. Thus, VALO is, on average, 46.3×, 6.3×, and 19.1× more
accurate than random, WCMP, and scoring, respectively.
Connection load. Fig. 10b shows the MAPE as the number of connections increases. Overall,

the graph shows that VALO outperforms the other four techniques by 13.1× on average. Specifically,
random shows the highest error (110.6% on average). WCMP (42.9%) and scoring (45.5%) exhibit
the next highest errors, while the errors are fairly low with WRR (5.3%) and VALO (3.2%). As the
connections increase, the MAPE values of the five techniques do not change much. These results
show that VALO outperforms random, WCMP, and scoring (34.8×, 13.5×, and 14.3×, each) and
effectively maintains its accuracy regardless of the number of connections.
Path number. Fig. 10c shows the MAPE as the number of paths increases. In the graph, the

error of VALO is, on average, 9.4× better than those of the other techniques. Specifically, the error
for random, WCMP, and scoring increases: random rises from 28.4% to 132.3%, WCMP from 2.4% to
90.6%, and scoring from 19.6% to 62.1%. Notably, WCMP presents a significant increase in error rate
from two paths to eight paths (38.1×). This is because the distortion of path weights that reduces
the accuracy in WCMP impacts significantly when the sum of path weights increases (§2.2.2). On
the other hand, WRR and VALO exhibit relatively stable and very low errors, averaging 3.2% and
4%, respectively. Compared to random, WCMP, and scoring, VALO reduces the errors by 21.5×,
11.8×, and 11.8× on average, respectively.

5.2 Resource-efficiency
We evaluate the resource-efficiency by measuring CPU usage, latency, and memory usage of traffic
splitting by varying three parameters that change in weight, connection load, and path number.
Although we conduct experiments for all parameters, due to the page limit, we omit the results
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of the path weight parameter because we observe that resource-efficiency results related to path
weight show a similar tendency to those of path number changes.

CPU usage. Fig. 11a shows the CPU cycles of traffic splitting techniques as the number of
connections increases. VALO exhibits a similar scale of latencies to random, WCMP, and scoring
(all under 1000 CPU cycles). In contrast, WRR shows significantly higher CPU usage compared
to the other techniques. Specifically, WRR’s average CPU cycle is 26.8× higher than VALO’s. In
addition, as the number of connections increases, the CPU cycles of random, WCMP, scoring, and
VALO remain stable (increasing by an average of 1.3×). On the other hand, the CPU cycles of WRR
increase by 38.1×. Compared to VALO, WRR’s increase is 26.7× greater.

Fig. 11b shows CPU cycles as the number of paths increases from two to eight. According to the
results, all five techniques maintain consistent CPU usage over the path numbers (x-axis). WRR
consumes the highest amount of CPU usage (21095 cycles on average). Random, WCMP, scoring,
and VALO consume much less CPU than WRR—1478, 1561, 1941, and 1965 cycles on average. The
average CPU usage of VALO is 10.7× improvement than WRR.
WRR performs table lookups and maintains complex structures to obtain accuracy (§2.2.2). So,

WRR demonstrates its great accuracy compared to other traffic splitting techniques (as in Fig. 10).
However, this comes at the expense of CPU resource efficiency that is significantly poor for WRR.
On the contrary, the results show that our approach, VALO, significantly reduces CPU consumption
and at the same time maintains accuracy similar to that of WRR (as demonstrated in Fig. 10).
Latency. Fig. 12a and Fig. 12b present the traffic splitting latency as the connection load and

the number of paths increase. We observe similar tendencies in latency results as we see in the
CPU usage results (Fig. 11). When the connection load increases (Fig. 12a), VALO achieves similar
latencies to random, WCMP, and scoring (all under 1 𝜇s). However, WRR shows the highest and
increasing latency (∼50.9 𝜇s at 120K connections). VALO’s latency is 25.4× better than WRR on
average, and 67.7× better at maximum (120K connections).
In addition, as the number of paths increases from two to eight (Fig. 12b), WRR exhibits the

highest latency of 18.6 𝜇s on average. In comparison, random, WCMP, scoring, and VALO show
relatively similar latency levels (1.5 𝜇s on average), which is 12.1× improvement fromWRR. Similar
to CPU usage results, VALO significantly improves the latency, which validates its effectiveness in
both accuracy and resource-efficiency.

Memory usage. Fig. 13a and Fig. 13b show the memory usage of the traffic splitting techniques
as the connection load and the number of paths increase. When the connection load increases (Fig.
13a), we observe that random, WCMP, scoring, and VALO exhibit consistent memory usage across
all connection loads, averaging 2.2 MB. In contrast, WRR shows a significant increase in memory
consumption: it increases 3.2× as the connection load increases from 1K to 120K. Compared to
VALO, WRR’s memory usage is 1.5× higher on average and 2.6× higher at peak (120K connections).

Next, as the number of paths increases (Fig. 13b), all techniques show stable memory usage. WRR
shows the highest memory usage, averaging 3.4 MB, which is 41.4% higher than VALO. The others
show relatively similar memory usage of 2.2 MB on average.

5.3 Overhead of Weight Fluctuations
We now evaluate the impact and overhead of traffic splitting techniques when path weights change.
Instead of using the given path weights for each experiment trial as the experiments before, here,
we change the path weights between 1 and 100 times per second, covering a range from slow to
frequent changes. The path weights are given random integer values from 1 to 100. The number
of paths is four, and the connection load is 10K. We measure both CPU usage and latency. CPU
usage is calculated as the average number of CPU cycles consumed per second per core. Latency is
measured as the average time for traffic splitting per packet during the path weight fluctuations.
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Fig. 15. Average FCT with end-to-end DC workloads.
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Fig. 16. 99th-percentile tail FCT with end-to-end DC workloads.

Fig. 14a and Fig. 14b show the CPU usage and latency measurements. First, in terms of CPU
usage (Fig. 14a), WRR consumes the most CPU cycles of 826.2K on average. In contrast, VALO uses
an average of 113.9K CPU cycles, which is 7.3× lower than WRR. In addition, on average, VALO
consumes only 0.4% (scoring)–17.9% (random) more CPU cycles, which is not significantly high
considering the improved accuracy of VALO.
Second, Fig. 14b presents the latency of five traffic splitting techniques. On average, VALO

achieves latency of 7.6 𝜇s, which is 8.45× lower thanWRR (64.51 𝜇s). In comparison, scoring achieves
an average latency of 7.3 𝜇s, making VALO’s latency only 4.1% higher despite its computational
overhead. This is because VALO requires only simple arithmetic calculations (Eq. 16).

5.4 Flow Completion Time of DCWorkloads
We present the average and tail-end (99th-percentile) FCT values. First, Fig. 15 shows the average
FCT for four DC workloads: web search (Fig. 15a), data mining (Fig. 15b), deep learning (Fig. 15c),
and in-memory cache from Twitter (Fig. 15d). The measured FCT values are normalized to the
baseline values in §3.4. So, a normalized FCT value close to 1 on the y-axis signifies that the traffic
splitting technique (on the x-axis) achieves performance comparable to the ideal case.

In the results, the four existing techniques exhibit severely poorer FCT values than the baseline.
Across the four DC workloads, random, WRR, WCMP, and scoring show FCT results that are higher
than the baseline by factors of 1.5×–2.7×, 1.3×–1.6×, 1.4×–1.8×, and 1.2×–2.1×, respectively. On
average, the increases in FCT for the four techniques are 1.8×, 1.3×, 1.4×, and 1.4×, respectively,
across all workloads. On the contrary, VALO outperforms the other techniques across all DC
workloads. VALO reduces the FCT by ∼1.3×, ∼1.9×, ∼1.6×, and ∼2.5× in web search, data mining,
deep learning, and in-memory cache, respectively. In addition, the FCT of VALO differs from the
baseline by only 6.5% (in-memory cache) to 14.9% (web search).

Next, Fig. 16 shows the 99th-percentile FCT values. We observe that the tail values follow similar
trends to the average values in Fig. 15 across four workloads. Compared to VALO, the tail FCT
values of random, WRR, WCMP, and scoring are 2.8×, 1.4×, 1.4×, and 1.4× higher on average.
Also, the FCT of VALO differs from the baseline by 13% at the tail (on average for workloads).
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Fig. 17. Effectiveness of VALO on multipath routing.

These results show that the effectiveness of VALO in accuracy and resource-efficiency enhances
the quality of major DC networking services on a macro scale as well.

5.5 VALO on Multipath Routing
Here, we present the effectiveness of VALO in multipath routing, which includes weight determi-
nation that updates weights based on network congestion or failures. We test two representative
schemes for software switches: VMS [90] and Clove [45]. VMS monitors the congestion levels of
paths and updates the path weights accordingly. It uses the random technique for traffic splitting.
Specifically, for each packet, VMS randomly selects two paths and transmits the packet to the
path with the higher weight. Similarly, Clove updates path weights but uses the WRR technique
for traffic splitting. In addition to weight determination and traffic splitting, Clove introduces a
packet grouping design. Instead of assigning all packets of a single connection to one path, Clove
divides a single connection into multiple packet groups, termed flowlets, and assigns a path to
each flowlet, making more fine-grained splitting. Specifically, Clove groups packets of a network
connection based on packet arrival times. So, a new flowlet is created when the time gap between
two consecutive packets exceeds a threshold (e.g., 150 𝜇s [75]).

For VMS and Clove, we replace their traffic splitting techniques (random and WRR, respectively)
with VALO. Four combinations are compared: VMS, Clove, VMS+VALO, and Clove+VALO. We
implement the four combinations using OVS and evaluate using the same experiment settings in §5.4.
We measure the FCT of four DC workloads, web search, data mining, deep learning, and in-memory
cache (Twitter). We vary the network load (amount of network connections) with 10% to 90% of
the network topology capacity, which is the identical configuration from the multipath routing
studies [13, 15, 45, 90]. As the traffic is generated following the traces, network link utilization and
congestion vary. The path weights are adjusted according to the weight determination techniques
proposed in the VMS and Clove papers during each experiment trial.

Fig. 17 shows the FCT of four DC workloads. Across all workloads, VALO significantly improves
FCT values of VMS and Clove. First, for VMS, VMS+VALO reduces the FCT of VMS by 23.9% (web
search), 24.7% (data mining), 23.4% (deep learning), and 23.8% (in-memory cache) on average. As
network load increases, the FCT of VMS increases by ∼3.7× (Fig. 17b), while for VMS+VALO, it
increases by ∼2.4× (Fig. 17c). On average, VALO reduces the FCT increase in VMS by 1.5×. Next,
for Clove, Clove+VALO decreases the FCT of Clove by 39.9%, 49.5%, 51.5%, and 25.7% on average
in web search, data mining, deep learning, and in-memory cache. The FCT values for Clove and
Clove+VALO increase by ∼6.2× (Fig. 17c) and ∼4.4× (Fig. 17a). On average, Clove+VALO reduces
the FCT increase by 1.4×. These results indicate that VALO successfully enhances the multipath
routing schemes in FCT performance.
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6 Discussion
Hash functions of VALO. VALO uses two hash functions for packet classification and path
selection. For packet classification, a hash function is used to obtain a connection ID from each
packet. To decide which hash function to use, we test five representative hash functions—CRC,
XOR, Pearson, Jenkins, and Murmur—on the CAIDA and ClassBench datasets used in §5. From the
five, Jenkins causes only 0.01% hash collisions (generating the same connection IDs for different
connection packets), while the others generate collisions of ∼98.7%. So, we choose Jenkins.

For path selection, another hash function is used to generate HP-values (§4.1). We design VALO
with the assumption that the HP-values would follow a uniform distribution. Thus, we also test
the above five algorithms on the CAIDA and ClassBench datasets to check whether the HP-values
generated by the hash function follow a uniform distribution. We conduct a chi-square goodness-of-
fit test [39] that measures the similarity between the ideal uniform distribution and the generated
values of the hash function. Among the five functions, Murmur shows the best similarity, while the
others show ∼79.9× poor similarities. So, we use Murmur for path selection.
VALO gravity calculation. VALO recalculates its gravity values only when path weights are

updated, because gravity only depends on these weights (see Eq. (16)). Otherwise, VALO gravity
remains unchanged if the path weights are unchanged. One might consider updating gravity values
when new connections arrive or existing connections end, as this may alter the number of active
connections and potentially change link capacity and congestion. Such changes are handled by
weight determination techniques [13, 35], and it is orthogonal to VALO. VALO can work with the
results from the weight determination techniques.
Accuracy under small network connections. In Fig. 10b, VALO demonstrates the high

accuracy on network connection numbers of 1K to 120K for data centers [12, 23]. Here, we further
evaluate VALO’s accuracy for smaller network loads (e.g., 100 network connections in IoT sensor
network [20, 52]). We vary the number of network connections from 10 to 100 under the same
experiment settings as in §5.1. The additional results show that VALO presents 2.5× lower prediction
errors (MAPE) on average for small connections than other techniques (random, WRR, WCMP,
and scoring). The results demonstrate that VALO is still accurate for even small network loads.
Traffic splitting at different locations. This study focuses on traffic splitting from software

switches across multiple paths of the networking fabric. However, traffic splitting can also occur in
other locations. For instance, hardware switches within the optical networking fabric can perform
traffic splitting [65], and NVLink canmanage traffic splitting for data communication between GPUs
within a single server. In addition, within the VM kernel, MPTCP [82] splits a network connection
into multiple sub-connections, assigning them to different network interfaces. We observe that
these different locations and environments for traffic splitting present unique challenges, which
merit separate studies [48]. Given that this study’s scope is focused on software switch-based
traffic splitting, which is prevalent in DCs (e.g., Meta [57] and Google [42]) and industries (e.g.,
RedHat OpenStack [70] and LINE [3, 41]), we believe the challenges of software switch-based
traffic splitting are significant and warrant a separate study, to which VALO contributes. We plan
to extend VALO to other locations in future research.
Traffic splitting in different contexts. First, Ananta [62] presents Microsoft’s cloud-scale

load balancing that includes two distinct designs. The first design is traffic splitting, and Ananta
uses the ECMP that is already compared with VALO under the name “random.” The second design
focuses on server load balancing, which is different from traffic splitting. Server load balancing
distributes multiple user requests across multiple servers or applications, such as distributing web
server requests to multiple backend servers. Ananta employs weighted random algorithm [94] for
server load balancing, which randomly selects a server based on weights. To our knowledge, the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 2, Article 39. Publication date: June 2025.



Revisiting Traffic Splitting for Software Switch in Datacenter 39:21

weighted random has not been applied to traffic splitting at all. To see its potential, however, we
newly implement the weighted random specifically for traffic splitting. Under the same experiment
settings with §5.1, we run the weighted random. The experiment results show that the weighted
random has the average MAPE of 22.4%, which is 9.8× less accurate than VALO in Fig. 15a. Also, in
terms of FCT for a web-search workload, the weighted random shows 9.6% longer FCT than VALO
on average.
Second, Niagara [44] introduces a traffic splitting algorithm designed for an SDN controller,

which pre-determines paths for potential network connections and installs flow rules on switches
before the connections are established. While VALO and many other traffic splitting techniques
(e.g., WRR and WCMP) assume a reactive routing—where individual switches select paths upon
the arrival of new connections—Niagara takes a proactive approach at the controller level. In terms
of selection algorithm, Niagara selects paths in a similar manner to the WRR technique described
in §2.2.2. It uses a binary tree data structure for path selection, sequentially mapping all possible
network connections to paths based on weights—similar to the weighted multipath table used in
WRR (Fig. 3a). To support this structure, Niagara modifies the weights so that their sum equals the
number of leaf nodes in the binary tree (i.e., power of two). This weight modification is in line with
WCMP, and we compare WCMP with VALO in §5.1. Our results show that VALO achieves 6.3×
higher accuracy than WCMP.
Third, weighted fair queueing (WFQ) [18] is a widely known packet scheduling algorithm that

guarantees each queue of a link receives its fair share of the bandwidth according to its weight. It
means that higher priority is given to queues that have transmitted fewer packets relative to their
weights. However, to our knowledge, WFQ algorithm has not been used for traffic splitting. To
explore its potential for traffic splitting, we newly design and implement WFQ on traffic splitting
as follows. Instead of selecting a queue, we make WFQ select a path for each packet while retaining
its weighted selection algorithm. In addition, to make the packets of the same connection be sent
through an identical path, which is the mandatory condition of traffic splitting to avoid out-of-order
packets (explained in §2.2), we use the routing result cache structure of WRR technique that stores
the path decision for the first packet of each connection (§2.2.2). The WFQ for traffic splitting shows
16% worse prediction errors (MAPE) than VALO on average. Also, for the web-search workload,
WFQ shows 23% longer FCT than VALO on average. In summary, VALO consistently outperforms
even the algorithms originally designed for different contexts.
Hardware switch applicability. One might wonder whether VALO can be extended to hard-

ware switches. Since existing hardware switches also use random and WRR techniques [6, 40],
they are likely to encounter similar inaccuracy and resource inefficiency challenges. We believe
implementing VALO in hardware switches is feasible because improving accuracy through VALO
just requires multiplication operations in gravity calculations. Also, programmable switches that
allow custom program codes to run on hardware (e.g., P4 [17]) are alternatives to hardware switches
[16]. We plan to extend VALO to programmable switches in the near future.

7 Related Work
Hashing polarization in packet classification. Before path selection, a hash function classifies
packets using their 5-tuple headers and obtains a network connection ID (§2). Different 5-tuple
information, however, could produce the same network connection ID, a scenario known as hash
polarization or collision. Various studies tried to avoid this limitation. For example, RePaC [91]
leveraged linear properties in hash algorithms (e.g., CRC) to mitigate polarization. CLEO [43] used
a machine learning approach to decrease hash collisions. Y Xu et al. [83] presented a hash reuse
scheme. VALO is orthogonal to these studies and can, therefore, work together with them.
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Software switch improvements. As software switches are widely used [74], previous studies
improved various aspects [89]. For example, NuevoMatchUP [69] improved scalability in packet
matching with OpenFlow rules. MFCGuard [22] improved the security and robustness of software
switches by monitoring the flow rule masks. PISCES [72] extended the software switch functionality
to allow for custom programmability in packet processing. NIKSS utilized eBPF to improve the
network performance of customizable packet processing logic (e.g., P4) on switches [60]. However,
to our knowledge, no studies enhanced the traffic splitting of software switches as VALO does.

8 Conclusion
Traffic splitting in software switches is essential in today’s DC networking. However, we report
that existing techniques face severe challenges: inaccuracy and resource-inefficiency. In this study,
we introduce a novel approach, VALO, which incorporates score graph and VALO gravity into
traffic splitting. Through the full implementation based on OVS, VALO achieves ∼34.8× and
∼67.7× improvements in accuracy and resource-efficiency, respectively, under real-world traces.
Furthermore, VALO shows remarkable improvements (∼2.8×) in tail FCT for four key real-world
DC workloads. We hope VALO can boost a diverse range of DC networking applications.
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