
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Machine Learning-based Prediction Models for
Control Traffic in SDN Systems

Yeonho Yoo, Graduate Student Member, IEEE, Gyeongsik Yang, Member, IEEE,
Changyong Shin, Graduate Student Member, IEEE, Junseok Lee, and Chuck Yoo, Member, IEEE

Abstract—This paper presents Elixir , an automated prediction model formulation framework for control traffic using machine learning.
Control traffic is vital in software-defined networking (SDN) systems because it determines the reliability and scalability of the entire
system. Various studies have sought to design control traffic prediction models for the proper provisioning and planning of SDN
systems. However, previously proposed models are based on descriptive modeling, well-suited for only specific SDN system instances.
Furthermore, these models exhibit poor accuracy (errors of up to 85%) because of the heterogeneity of SDN systems. Because
descriptive modeling requires a significant amount of human contemplation, it is impossible to formulate adequate prediction models
for countless SDN system instances. Elixir addresses this problem by applying machine learning. Elixir starts the model formulation
through self-generated datasets. Then, Elixir searches prediction models to fit the accuracy for respective SDN systems. Also, Elixir
picks robust models that exhibit reasonable accuracy even in a network topology that differs from the topology used for model training.
We evaluate the Elixir framework on nine heterogeneous SDN systems. As a key outcome, Elixir significantly reduces prediction
errors, achieving up to 10.6× improvement compared to the previous model for control traffic throughput of OpenDayLight controller.

Index Terms—Machine learning, Software-defined networking, Control traffic, Prediction model formulation, Prediction robustness

✦

1 INTRODUCTION

SOFTWARE-defined networking (SDN) is a network sys-
tem that disaggregates control and data planes of net-

work switches and centralizes the control planes into the
SDN controller. The SDN controller governs all the SDN
switch activities through control applications that are mod-
ules of the SDN controller. Control applications implement
the policies for network governing, such as routing, traffic
monitoring, and firewall. The decisions generated from the
control applications are communicated and realized in SDN
switches through control traffic between an SDN controller
and switches. The definition (syntax) of control traffic is
referred to as south-bound interface (SBI).

SDN allows control plane components (i.e., SDN con-
troller, control applications, and SBI) to be independently
selected. The control plane can govern any data plane, such
as network topologies of switches and their traffic, because
the two planes are disaggregated. These benefits flourish
the adoption of SDNs in various sectors. For example,
Google manages its datacenter networks [1] and wide-area
networks between datacenters [2] through Orion, a custom
SDN controller [3]. It uses OpenFlow (OF) as its SBI. Also,
the SDN concept is used for various open-source network
platforms, such as SD-Fabric for edge computing by ONOS

• Yeonho Yoo and Gyeongsik Yang are the co-first authors who contributed
equally to this work. Chuck Yoo is the corresponding author.

• All authors are with the Department of Computer Science and Engineer-
ing, Korea University, Seoul, Republic of Korea, 02841.
E-mail: {yhyoo, ksyang, cyshin, jslee, chuckyoo}@os.korea.ac.kr

• This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (NRF-2021R1A6A1A13044830), by the NRF grant funded
by the Korea government (MSIT) (NRF-2023R1A2C3004145), by the
Google Cloud Research Credits program, and by a Korea University Grant.

Manuscript received January 6, 2023; revised xx xx, 2023.

controller [4] and Linux foundation’s OPNFV for network
function virtualization by OpenDayLight (ODL) controller
[5]. Besides, SDN systems are deployed in cable networks of
COMCAST and broadband access of AT&T [6].

In SDN systems, control plane performance, especially
control traffic, is a critical factor [7], as a bottleneck in control
traffic can slow down all network operations, and in the
worst case, it may cease to operate. Too much control traffic,
in particular, could severely delay the SDN controller’s
operations (e.g., topology discovery) or even cause its failure
[8]. In addition, on the SDN switch side, heavy control
traffic, such as flow statistics monitoring and flow rule
setup, can significantly slow down packet forwarding [9].

Such bottlenecks have been reported in real-world SDN
systems as well. Depending on the amount of control traffic,
the utilization of SDN switches can deteriorate significantly,
ranging from 20% to 90%, even when managing the iden-
tical physical networks [10]. The amount of control traffic
determines the energy efficiency, scalability, and reliability
of fault handling in real SDN systems [11].

Therefore, it is very important to design and configure
the target SDN systems properly, but it is widely known
that such design and configuration is extremely difficult due
to the complexity of SDN systems. This paper proposes, for
the first time, to predict control traffic for the proper design
and configuration of the target SDN systems.

Several studies have proposed to predict control traffic
as follows [12], [13], [14]. First, previous studies have been
confined to a single SDN system’s control plane of which
they aim to predict the control traffic. The target SDN system
instances (i.e., SDN controller, control applications, and SBI)
is considered as a stochastic system. Then, causal relation-
ships between the control traffic and the elements of the
system (e.g., number of hosts and switches) are identified.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

The observed causal relationships are translated into a pre-
diction model. For example, the total throughput or number
of control traffic messages is derived by multiplying the
message count and length per message type and their sum.
This model formulation is known as “descriptive modeling”
(DM) [15], [16].

However, the DM approach is challenging to be used
in real-world SDN systems because the SDN systems allow
a great degree of flexibility in their systems. For example,
network operators can freely select any SDN controller
among more than 30 alternatives [10], [17]. Also, control
applications can be adjusted dynamically—ONOS provides
175 control applications that can be turned on and off at
will. Moreover, SBI can be customized, which increases
the variety of the SDN systems (§2.1). Simply, there are
countless possible SDN system instances.

Each SDN system instance is distinct in terms of its
SDN controller, control applications, and SBI, leading to
significant differences in control traffic between instances.
We replay and evaluate the prediction errors of the previous
studies using identical SDN controllers and SBIs as their
target systems. At this stage, we have no choice but to run
a greater number of control applications than the target
systems in the previous studies. This is because, in a real
system, certain control applications must be executed to
maintain the minimum functions of the SDN systems (called
default applications, such as switch liveness verification), in
addition to the control applications covered by the predic-
tion models. We observe that the prediction errors reach up
to 85%, which is far from the precise prediction (§2.2). This
means that the prediction model should be formulated per
each SDN system instance.

Yet, applying DM on countless SDN system instances
is not feasible at all. The reason is that DM requires the
observation and determination of causal relationships, fol-
lowed by the model formulation on individual SDN systems
that involve ruinous human contemplations. Moreover, the
DM approach is based only on the observed relationships.
Thus, some relationships can be excluded from the model’s
coverage, which inevitably causes poor accuracy when the
real SDN system instances bear such excluded relationships.

We herein present Elixir, an automated prediction model
formulation framework. Elixir produces a prediction model
for each SDN system instance. The model predicts control
traffic by accommodating the various SDN data plane, such
as network topologies and traffic, as its input features.
Instead of DM, Elixir leverages machine learning (ML) to
formulate prediction models through datasets. Therefore,
undiscovered relationships of the target system could be
reflected by the dataset. Also, Elixir formulates the mod-
els without causal relationships by updating the models’
parameters (e.g., weight and bias) via iterative training.
Furthermore, Elixir is designed to automate the model for-
mulation without any human contemplations. Thus, Elixir
is applicable across heterogeneous SDN systems.

Elixir confronts three serious challenges when employ-
ing ML: 1) acquiring the dataset, 2) finding a pertinent
ML structure, and 3) improving prediction accuracy. First,
regarding the dataset, it is widely recognized that the lack of
“high quality” datasets is a major difficulty when applying
ML to SDN systems [18]. We develop “SDN dataset gener-

ator” (SDN-DAG) that self-generates a dataset for a given
SDN system instance (§3.2). Consequently, Elixir does not
require datasets ahead of time.

Next, finding a pertinent ML structure is challenging
when applying ML. It is widely recognized that identifying
an appropriate ML structure for a specific system is the
most laborious and time-consuming step in formulating a
prediction model [19], [20]. Specifically, it is difficult to de-
termine a right ML algorithm and its model structure, such
as the number of layers in neural networks. Additionally,
the optimal ML algorithm and structure for achieving the
best accuracy may vary for each SDN system instance. To
address this, Elixir defines a "model space" and introduces a
new search scheme called the "two-phase search" (§3.3). The
model space categorizes ML algorithms for control traffic
prediction as shallow and deep algorithms based on their
structural complexity. The two-phase search then carefully
explores the shallow and deep algorithms, involving lin-
ear regression, support vector regression, random forest,
LightGBM, XGBoost, deep neural network, and convolution
neural network and up to 65 candidate models. We design
the two-phase search to be time-efficient for training models.

Finally, to improve prediction accuracy, Elixir introduces
a unique criterion for final model selection from candidate
models—“robustness.” Robustness refers to the extent to
which an ML model is accurate even when the distribu-
tions of input features differ from those of the training
dataset. Generally, ML models show high accuracy when
the input features given for the prediction have a similar
distribution to the training dataset. If not, the accuracy falls
highly than the one expected from the training [21], [22].
For example, we find that the prediction error can increase
23× on average when the input features’ distributions (i.e.,
network topologies of data plane) differ. To make our model
robust, Elixir augments the training dataset with different
distributions of input features and scores the candidate
models using the augmented dataset. Lastly, a prediction
model, called supreme model, is selected (§3.4).

We evaluate Elixir with nine different SDN systems. The
contributions of this study are summarized as follows:
• Design and implement the Elixir framework that is ap-

plicable on heterogeneous SDN systems.
• Overcome the challenge of applying ML to SDN

systems—automated prediction model formulation by
self-generating datasets without any prior datasets.

• Devise a new model search scheme that finds a supreme
model with best-possible prediction accuracy.

• Improve the prediction accuracy and prediction robust-
ness up to 10.6× and 80.44%, respectively.
The rest of this paper is organized as follows. §2 ex-

plains the background, motivation, and goal of this study.
§3 shows the design of the Elixir framework. §4 presents
the implementation and the evaluation results. §5 discusses
future research directions. Finally, §6 concludes this paper.

2 BACKGROUND, MOTIVATION, AND GOAL

In this section, we present background of this study includ-
ing SDN systems and control traffic characteristics (§2.1).
Then, we discuss previous related studies, their accuracy
problems, and the goal of this study (§2.2).

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

SDN controller

Control
application 1

Control
application 2

…

RX TX

Fig. 1: SDN
system example.

0 25 50 75 100
SMAPE (%)

W1 (ONOS, event,
lower bound)

W1 (ONOS, event,
upper bound)

W2 (ODL,
throughput)

W3 (ONOS,
throughput)

Fig. 2: Average errors of
previous studies.

2.1 Background

Heterogeneity of SDN systems. Fig. 1 illustrates an exam-
ple of an SDN system comprising an SDN controller and
switches. We denote the traffic flowing from the SDN con-
troller to a switch as TX, and the other traffic flowing from a
switch to an SDN controller as RX. Also, messages consist-
ing of the control traffic are referred to as “events” because
they are regarded as events that trigger network operations.
For example, upon receiving an event from a switch, such
as a new flow rule request, the SDN controller runs the
corresponding control applications (e.g., path calculation).
Moreover, an event from the SDN controller causes a net-
work switch to perform specific operations, such as flow
rule installation at its flow table or generating a statistics
reply to the SDN controller.

The heterogeneity of SDN system instances comes from
the following reasons. First, there are more than 30 types of
SDN controllers [17]. Second, each SDN has its own unique
variety of control applications, such as flow rule installation,
firewall, network monitoring, and proxy ARP. Additionally,
numerous types of SBIs exist as pre-defined protocols, such
as OF (from version 1.0 to 1.5), ForCES, POF, NETCONF,
and OPFlex [23]. Moreover, network operators can define
the SBI arbitrarily (e.g., P4 [24]). In summary, there are
numerous options for the SDN controllers, control appli-
cations, and SBIs that constitute an SDN system instance.

Necessity of prediction. It is well-known that network
planning, such as SDN controller placement, determination
of SDN controller parameters (e.g., buffers), and selection of
SBI, affects most performance aspects of SDN systems like
reliability, scalability, energy efficiency, fault management
and quality-of-service [11]. For example, Zhu et al. [10]
reported that when handling identical network governing
tasks (e.g., flow rule installation), an SDN switch can either
be idle (20% CPU utilization) or bottlenecked (90% CPU
utilization) depending on the SDN system instance.

Network planning is impossible without accurate control
traffic prediction. For example, SDN controller placement
takes control traffic throughput as its input for network
planning because the control traffic determines the amount
of tasks that SDN controllers perform [11], [25]. Similarly,
the paper [26] proposed a model to decide the minimum
buffer size of an SDN controller for storing control traffic.
To determine a buffer size that does not create a bottleneck
in an SDN system, the model considers the number of
events in control traffic and calculates their arrival rates.
In addition to the example mentioned above, various other
studies demonstrated the importance of control traffic in
designing reliable SDN systems [7], [9], [17], [27], [28], [29].

2.2 Related Work and Goal

Related work. Previous studies [12], [13], [14], [30] have
presented various prediction models. Table 1 summarizes
the formulation methods, target SDN systems, and output
features of the previous studies. As the models are formu-
lated using DM, they constrain the coverage of the target
SDN system instances. For example, in [12] and [13], the
authors presented models for the ONOS and ODL con-
trollers. Also, the two models covered control applications
conducting flow rule installations (i.e., fwd and ifwd [12] and
simple forwarding [13]) with OF 1.0 SBI. Yu et al. [14] built
three prediction models for ONOS, POX, and Floodlight
(FL), with each model covering a few control applications
and OF 1.0 SBI. In another study [30], a prediction model for
a special type of control traffic, namely the traffic between
ONOS controllers running as a distributed architecture, was
formulated. As output features, existing studies focused
on average control traffic or its lower and upper bounds.
Also, previous studies predicted aggregated values without
clearly distinguishing between TX and RX control traffic.

Prediction accuracy of related work. We evaluate the
prediction models of previous studies [12], [13], [14] in Table
1. The purpose of the previous studies is to present models
for describing a specific SDN system, so most studies lack
accuracy evaluations. We test their prediction accuracies
on the real values to see the problems in heterogeneous
SDN systems. We denote the previous prediction models
as “W1” [12], “W2” [13], and “W3” [14]. For W1, we test the
prediction accuracy of the lower and upper bounds for the
average number of control traffic events of ONOS. Also, for
W2 and W3, the average amount of throughput of ODL and
ONOS are evaluated, respectively.

Previous studies introduced mathematical equations to
predict the features in their SDN system instances using the
number of hosts and switches. By using their equations, we
obtain the prediction values of the previous studies. Also,
we prepare the same target systems as those used in the
previous studies to measure real values. We use a server
with an Intel Xeon E5-2650 CPU of 20 cores and 64 GB
memory, running Ubuntu 16.04. We run an instance of the
SDN system as follows. For W1, we run ONOS controller
version 2.5 as a container. Then, we run the fwd control ap-
plication with OF 1.0 SBI. We run the same controller for W3,
with control applications like fwd and monitoring. For W2,
we run ODL version 15.1.0 as a container, along with the
l2switch control application. As for the physical networks
(data plane), we emulate network switches through Open
vSwitch and Mininet, which is a software-based emulation.
We change the network topology to linear, complete binary
tree, 4-ary, 6-ary, 8-ary, 2-tier, and 3-tier as required. We also
vary the number of hosts (1–320), traffic connections (1–100),
and intervals between traffic connections (1–10 s).

The accuracy is calculated as the symmetric mean abso-
lute percentage error (SMAPE) that gives equal penalty on
the positive and negative error between the prediction and
real values [31]. SMAPE is defined as Equation 1, where Yi

represents the real value and Ŷi is the prediction value. Fig. 2
shows the results with the SMAPE ranging from 44.3% (W1,
ONOS, event, lower bound) to 85% (W2, ODL, through-
put). The errors approaching 85% indicate that the previous

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1: Related work comparison.

Related work Formulation
method

Target SDN system Output features (prediction target)SDN controller Control application SBI
A. Bianco et al. [12]

DM

ONOS fwd and ifwd OF 1.0 Bounds of events and throughput (aggregated)

A. Bianco et al. [13] ODL Simple Forwarding
(l2switch) OF 1.0 Average events and throughput (aggregated)

B. y. Yu et al. [14] ONOS, POX, FL A few control applications
(e.g., routing, monitoring) OF 1.0 Average throughput (aggregated)

A. S. Muqaddas et al. [30] ONOS None None Average throughput (aggregated)

Elixir ML Any SDN controllers Any control applications Any Average and maximum events and throughput
per TX and RX

SDN dataset
generator

(SDN-DAG)

Model
space

SDN controller
Control application

SBI protocol

Supreme
model derivation

SDN system
specification

Training
dataset

Robust dataset

Candidate
models

Supreme
model

Fig. 3: Elixir workflow.

studies are not applicable to the in-practice systems. Due
to the poor control traffic prediction, network planning is
likewise inaccurate. Therefore, ensuring the reliability of
SDN systems is not feasible.

SMAPE =
100

n
×

n∑
i=1

|Yi| − |Ŷi|
(|Yi|+ |Ŷi|)/2

(1)

We find that the poor predictions of previous studies
result from the coverage in control applications. Previous
studies made their own assumption in which control ap-
plications run in the target SDN system. However, real SDN
system instances run additional control applications that are
not part of the assumption. For example, when using ONOS
controller, a minimum of seven control applications is re-
quired to run on the SDN system instance (e.g., SBI parser
for OF and topology discovery). However, previous studies
only assume one or two of control applications because
the studies are based on DM of mathematical equations,
which find it challenging to capture the various control
applications. As a result, the predicted values significantly
differ from the actual values. Note that the poor accuracy
and coverage of DM have also been reported in other areas
(e.g., middleware) [32].

Approach of this study. Thus, the prediction model
should be formulated uniquely for each SDN system in-
stance. However, DM requires heavy contemplations that
cannot be automated (§1). Elixir uses machine learning
that generates prediction model based on dataset. As the
prediction model is trained using this dataset, the control
applications captured in the dataset can be predicted by
the model. So Elixir can automatically formulate prediction
models for any control application. Thus, this study over-
comes the limitations of previous studies that only covered
two to three control applications. In our experiments, we
use Elixir to automatically generate ML models for nine
representative different SDN system instances (§4.2), each
encompassing up to 13 control applications.

3 Elixir DESIGN

This section introduces the Elixir framework. The Elixir
workflow is illustrated in Fig. 3. Elixir starts with the
specifications of an SDN system instance for which it for-
mulates a prediction model. Note that Elixir is designed to

TABLE 2: Input feature candidates—definition and notation.

Topology features Traffic features
Number of edge switches nes Number of switch ports nport

Number of core switches ncs Number of traffic connections ntc

Number of hosts nhost Network monitoring interval tmon

Average number of switch
hops of traffic connections nhop Packet size of events lmes

Average traffic
connection interval ttc

Packet size for
topology discovery ltopo

Number of network links nlink

n e
s

n c
s

n h
os
t

n t
c

t tc n l
in
k

n p
or
t

n h
op

nesncsnhostntcttcnlinknportnhop -1.0

-0.5

0

0.5

1.0

(a) ONOS, fwd, OF 1.3

n e
s

n c
s

n h
os
t

n t
c

t tc n l
in
k

n p
or
t

n h
op

nesncsnhostntcttcnlinknportnhop -1.0

-0.5

0

0.5

1.0

(b) ODL, l2switch, OF 1.3

Fig. 4: Correlation between input features (Pearson R).

be a framework that predicts any SDN system instances by
employing multiple ML models. It is pretty well-known that
obtaining the dataset is critical for ML training, and to the
best of our knowledge, there exists no training dataset for
SDN systems. So, the first step of Elixir is for the SDN-
DAG to produce datasets for the SDN system instance.
Based on the dataset from SDN-DAG, the model space
searches the various ML algorithms and produces candidate
models. Afterward, the supreme model derivation selects
the optimal model from the candidate models that meets
both the prediction accuracy and robustness.

To explain the SDN-DAG, the input and output features
of the prediction models are described in §3.1. Then, the
SDN-DAG (§3.2), model space (§3.3), and supreme model
derivation (§3.4) are presented.

3.1 SDN System Specification (Features of Models)
SDN system specifications include the SDN controller, SBI,
and control applications. Then, we define the features that
constitute the dataset. Specifically, to create accurate and
robust prediction models for each instance, input features
are defined to capture the control traffic characteristics of
the SDN system. After input features, output features are
defined for the control traffic metrics. Finally, based on
the specification, Elixir generates a training dataset for the
prediction model formulation by SDN-DAG (§3.2).

Input features. We review all the features that have
been used in DM in previous studies [12], [13], [14]. Table 2
classifies the 11 features from the previous studies into two
categories: 1) network topology-related (topology features)
and 2) network traffic-related features (traffic features). We

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

…

SDN
system

instance SDN controller

Control app 1 Control app 2 …

④	
Dataset	
record

①	Select	input	features

②	Run	emulation

③	Measure	
output	features

Fig. 5: SDN-DAG structure.

observe that several features listed in Table 2 remain un-
changed within an SDN system instance, implying that they
are not useful as input features. For instance, once the SBI is
fixed, the control traffic length per network control (lmes)
remains constant. Also, the network monitoring interval
(tmon) and packet size for topology discovery (ltopo) are
fixed for an SDN controller and control application, making
them constant. Accordingly, we exclude these three features,
and consider the remaining eight for the input features.

Next, we perform a correlation analysis on the features
to identify those that are distinct from the others. The
results are depicted in Fig. 4. The number of switch ports
(nport) and network links (nlink) are significantly close
(0.97 Pearson R score). This tendency is also observed in
other SDN system instances that we have tested. As input
features, we select nlink over nport because nlink contains
the connection information between the switches and hosts,
whereas nport only contains the number of existing ports
in the switches, regardless of whether they are connected
to the switches and hosts. Consequently, the input features
are: nes, ncs, nhost, ntc, ttc, nlink, and nhop. For a single SDN
system instance, the input features reflect the characteristics
of network topology and traffic.

Output features. Because the control traffic is composed
of TX and RX traffic (Fig. 1), the number of events and
throughputs for TX and RX are considered as output fea-
tures. In addition, the average amount of control traffic (per
second) from all switches is vital because the SDN controller
should be able to process the control traffic on top of the data
plane traffic. So, the average control traffic (avg) per second
is considered as an output feature.

Additionally, the maximum amount of control traffic
(max) is considered as an output feature so that the network
planning can prepare for the burst control traffic throughput
and events. In summary, the eight output features are avg
TX event, avg TX throughput, max TX event, max TX
throughput, avg RX event, avg RX throughput, max RX
event, and max RX throughput.

3.2 Dataset Generator (SDN-DAG)

Fig. 5 depicts the dataset generator of Elixir, SDN-DAG, that
generates datasets required to train models for a given SDN
system instance. SDN-DAG generates two types of datasets
(i.e., training dataset and robust dataset). To generate a
record of the training dataset, SDN-DAG first selects the
input features to establish a data plane (physical network)
that will be controlled by an SDN system instance (1⃝, Fig.
5). SDN-DAG builds the data plane with the selected topol-
ogy features and runs network emulation with the traffic
features (2⃝). Then, the output features are measured by

TABLE 3: Input feature range of the SDN-DAG.

Value Range Value Range Value Range Value Range
nes 1–32 ttc 0–10 ncs 1–64 nlink 0–382
nhost 1–320 nhop 1–64 ntc 1–100

SDN-DAG (3⃝). A dataset record is obtained by combining
the selected input features and the measured output (4⃝).
The process of Fig. 5 is repeated until the desired number of
records are created.

Generation of input features. The input features are
either topology or traffic features. SDN-DAG selects the
topology features (defined in §3.1) first because they are
topology-dependent. Some topology features are fixed ac-
cording to the topology. In 2-tier and 3-tier tree topologies,
for example, the numbers of switches and network links
are fixed [33]. Furthermore, the network topology influences
the interdependence of the input features. In a linear topol-
ogy, the number of network links is decided based on the
number of hosts and switches because the links connect the
hosts and switches in a linear fashion. Thus, the SDN-DAG
decides on a network topology to select topology features.

As for topologies, we use linear and tree topologies.1

The linear topology, the simplest form of network topology,
clearly depicts the control traffic consumption with the
input features. The tree topology has more complicated
network configurations than the linear topology has but
is more widely utilized for datacenter topologies, such as
the fat-tree topology. For the training dataset that is used
to train candidate models using the model space (§3.3),
SDN-DAG uses linear and complete binary tree topologies.
This is because these topologies operate well on most SDN
system instances that we have tested and empirically show
fewer errors in the output feature results, while the seven
input features vary considerably. For the robust dataset that
is used to select one supreme model (§3.4) from among
candidate models, we augment data records generated from
other tree topologies (i.e., 2-tier and 3-tier) that reflect real-
world scenarios.

We have also considered the mesh topology because it
is one of the most complex topologies that connects all
the network switches. However, we ruled out the mesh
topology for the following reason. The mesh topology
comprises circular paths whose starting and ending points
become identical; however, many existing SDN controllers
are incapable of dealing with network routing loops [34].
Addressing this issue requires a new implementation of
control applications on each SDN controller; so, we do not
use the mesh topology in this study.

Once the network topology is decided, the topology
features are fixed depending on the topology or other inter-
dependent input features. After determining the topology
features, the traffic features, such as the number of traffic
connections (ntc) or traffic connection intervals (ttc), are
determined. Table 3 presents the value ranges of the input
features. Note that when the input features are not balanced,
the predictions of the trained model are biased [35]. There-
fore, we design the SDN-DAG to select the input features
with an even distribution of the features’ ranges.

1. SDN-DAG can create records from other topologies, such as fat-
tree and ISP topologies to evaluate prediction robustness (§3.4).

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Generation of output features. All switches are emu-
lated by Open vSwitch, which is a widely used software
switch in real-world network systems that supports a vari-
ety of SBIs. We use Open vSwitch for both core and edge
switches, as it provides the required functionalities for both.
SDN-DAG then starts new TCP connections on the switches.
By receiving packets from the new connections, the switches
generate control traffic to the SDN controller, and in turn,
the SDN controller also sends control traffic to switches,
such as for routing. SDN-DAG measures the control traffic
and calculates eight output features (e.g., avg TX event). In
this study, we run SDN-DAG on a server of an Intel Xeon
E5-2650 CPU (20 cores) and 64 GB of memory.

Data records are generated with the input features and
the corresponding output features. They are used to train
prediction models in the model space. We report the time
that SDN-DAG takes to generate datasets in §5.

Consideration of control application characteristics. We
define an SDN system instance as a combination of the
SDN controller, SBI, and control applications. Our dataset is
created per SDN system instance so that the dataset includes
control traffic of a specific set of control applications. So, the
characteristics of the control applications are captured in the
dataset. For example, suppose that we generate a dataset for
FL controller running “forwarding” control application with
OF 1.0 SBI. SDN-DAG creates control traffic and measures
output features by running them. Each data record consists
of 15 numerical values: seven input features (nes, ncs, nhost,
ntc, ttc, nlink, and nhop) and eight output features (avg TX
event, avg TX throughput, max TX event, max TX through-
put, avg RX event, avg RX throughput, max RX event, and
max RX throughput).

Control applications can behave differently depending
on their triggers or thresholds. For example, network mon-
itoring that triggers statistics requests every 1 s generates
a larger amount of control traffic than those triggered at
5 s intervals. Prediction models from previous studies can
model the control traffic, but they are limited in terms of
fixed values of thresholds. The reasons are: they 1) view the
SDN system as a stochastic system, 2) manually observe and
identify the causal relationship between the control traffic
and the elements of the SDN system instances, such as
network topology, control application, and thresholds, and
3) translate the relationship into the model. Especially, these
previous studies manually analyze and observe the causal
relationships from the control application implementations
(codes) and not measure the realistic workloads as datasets.

Given that control applications typically include a num-
ber of thresholds (e.g., 13 per control application in ONOS),
it is challenging for a single DM to reflect multiple thresh-
olds all together. So, because previous studies rely on fixed
thresholds, they are limited in the prediction power for the
control traffic with changing thresholds. On the other hand,
Elixir utilizes machine learning to formulate prediction
models that only needs datasets and requires significantly
less human effort than DM of previous studies. So, when
the threshold is changed, its effect is reflected in the dataset.
So Elixir can build prediction models without analyzing
the changed causal relationship manually. We release the
datasets generated by SDN-DAG at GitHub repository [36].

Linear
regression

Support
vector

regression

Random
forest

regression
Light-
GBM

XG-
Boost

Shallow pipeline①
Model

pipelines

②
Two-phase

search

Trained
model

Deep pipeline

Deep
neural

network

Convolutional
neural

network

③
Candidate

model

Shallow search

Trained
model

Trained
model

Trained
model

Trained
model

Trained
model

Trained
model

Deep search
Touch-
stone
RMSE

Fig. 6: Model space.

3.3 Model Space

There are many ML algorithms, and the answer to the
question of which algorithm works best depends on the
target system (use-cases). Thus, identifying an appropriate
algorithm for a target system is typically done on a time-
consuming process and trial-and-error basis because grid
search is commonly used. This challenge has also been re-
ported in previous studies. For example, one previous study
[19] reported that three expert data scientists spent several
weeks working full-time to find the proper ML algorithm for
a public transport maintenance system. Another study [20]
reported that 84% of ML practitioners expended significant
effort and energy in finding and selecting the appropriate
algorithm for their data.

As an alternative to the time-consuming trial-and-error
efforts, Elixir introduces the notion of “model space.” The
model space includes collections of ML algorithms (1⃝,
Fig. 6). The model space generates prediction models for
each ML algorithm in pipelines (to be explained in the
next paragraph). We also devise “two-phase search,” a new
search strategy that improves time and resource efficiency
in training ML models in the model space (2⃝, described
subsequently). The models identified through the two-phase
search are referred to as “candidate models” (3⃝).

The model space has two model pipelines: shallow
pipeline and deep pipeline. The shallow pipeline includes
classic ML algorithms such as linear regression. Also, the
shallow pipeline has ensemble algorithms that connect mul-
tiple models of classic ML algorithms as a single model (e.g.,
XGBoost). We design the shallow pipeline with linear re-
gression (LR), random forest regression (RF), support vector
regression (SVR), LightGBM (LG), and XGBoost (XG). These
algorithms are also known to be effective for system per-
formance prediction (e.g., network QoS, link outage, GPU
utilization, and CPU utilization [37], [38], [39], [40]). Model
space sequentially produces candidate models by the ML
algorithms in the shallow pipeline. In particular, ML algo-
rithms of the shallow pipeline generate one candidate model
for each because the algorithms do not have a sophisticated
model structure and have only a few hyperparameters [37],
[38], [39], [40]. Therefore, the shallow pipeline results in five
candidate models.

The second model pipeline, i.e., deep pipeline, comprises
deep learning algorithms. Such algorithms provide a vari-
ety of model structure options. For instance, deep neural
networks (DNNs) include diverse hyperparameters, such as
the number of fully connected (fc) layers, model optimizer,
and initializer. So, deep learning algorithms can generate
multitudinous model structures. For the deep pipeline, we
include DNNs and convolutional neural networks (CNNs)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 4: Notations and descriptions.
Notation Description Notation Description

dt Training dataset dr Robust dataset
dit i-th data record of dt dir i-th data record of dr

dit.input,
dit.output

Input of the dit,
output of the dit

M
Set of models from both

shallow and deep pipelines

M i i-th model in M p(M i, djr)
Predicted value from M i

for j-th element of dr

because they are nonlinear yet flexible ML algorithms that
can handle noisy data and robust predictions [41].

The structure of CNN consists of 1) input nodes, 2)
convolution layers, 3) hidden layers, and 4) output nodes.
Input nodes take input features. Convolution layers focus
on subsets of the input features (through filters) to detect
important aspects. The results of the convolution layers are
passed to hidden layers that perform calculations using
weights and biases. Output nodes predict final eight output
features on control traffic.

Elixir takes seven input features. CNN requires three-
dimensional data as its input (like images), so we organize
our input features into 7x1x1 matrix. This matrix is entered
into the CNN structure through the input nodes. We have
also tested other matrix forms, such as 1x7x1, but the pre-
diction accuracies show no differences.

The ML models from deep learning algorithms are mul-
tiple. Among them, the model space can choose one model
showing the best accuracy, such as RMSE, as a candidate
model. However, we consider all the multiple trained mod-
els from the deep pipeline as the candidate models to
consider the prediction robustness, which requires a scoring
(prediction) with another dataset (to be explained in §3.4).

In general, training deep pipeline algorithms consumes
a large amount of computing resources and time efforts,
although they tend to achieve high prediction accuracy. The
two-phase search aims to reduce such efforts by splitting
the training of the model space. The two-phase search first
trains algorithms of the shallow pipeline (shallow search)
and then 2) trains algorithms of the deep pipeline (deep
search) with the results from the shallow search.

The two phases are explained in depth as follows. For
simplicity, we utilize the notations listed in Table 4. In the
shallow search, the prediction models from the shallow
pipeline are generated. For the training, we use a training
dataset (dt) from SDN-DAG, which contains 2K records
having the input features of linear and complete-binary
tree topologies (§3.2). dt is divided into 80% and 20% for
model training and validation, respectively. Specifically, the
former 80% is used for model training iterations (forward
and backward propagations); the latter part 20% is used to
determine whether the model’s parameters have converged
by calculating the prediction accuracy—average root mean
squared error (RMSE)—for the eight output features. When
the calculated RMSE does not change significantly, the
shallow search is complete. Then, we have five candidate
models from the shallow ML pipeline (one each from LR,
RF, SVR, LG, and XG).

The deep search then trains deep learning models in
the deep pipeline. The deep search requires navigations
of possible models of deep learning algorithms to find the
proper model structure. For example, Table 5 lists the hyper-
parameters of DNN and CNN (e.g., the loss function [42],
activation function [43], initializer [44], and optimizer [45]).

TABLE 5: Hyperparameters (deep search).
Hyperparameter Category Hyperparameter Category

Loss function
MSE, MAE,

MSLE, MAPE
Activation
function

Elu, relu, linear

Initializer
he_normal,
he_uniform

Optimizer adam, rmsprop

Number of
hidden layers

1–10
Number of nodes
per hidden layer

2–700

Stride size* 1–6
Number of

convolution layer*
1–4

Number of filters* 1–100 Filter size* 2–7
Activation function

of convolution layer*
elu, relu

* Hyperparameter for CNN. Others for both DNN and CNN.

Random Bayesian Greedy Hyperband
0

1

2

0

2000

4000

6000

8000

NAS scheme

Search timeBest RMSE

Search tim
e (s)Be

st
 R

M
SE

Fig. 7: Comparison of NAS schemes.

Different hyperparameter combinations result in different
model structures; thus, the fundamental challenge in using
the deep search is to discover proper model structures [46].

Generally speaking, the strategy of determining a suit-
able model structure in deep learning is known as net-
work architecture search (NAS). We conduct the following
experiments to design NAS in deep search. We test four
representative schemes: 1) hyperband, 2) greedy search, 3)
Bayesian optimization, and 4) random search. Hyperband
initially trains all possible model structures for only a few
epochs, selects the best one, and then trains it further until
it converges. Greedy search finds the best model structure
layer-by-layer at each trial, it identifies the optimal hyper-
parameter for each model layer without considering the im-
pact on other layers. Bayesian optimization uses past trials
data within a probabilistic model and prioritizes promising
hyperparameters from past trials. Random search selects
hyperparameters randomly for each trial.

We compare search time and prediction error (RMSE)
of the four schemes. The experiments run 60 trials for
search schemes to find a suitable model structure for the
DNN algorithm. We use a training dataset created for an
SDN system instance of ODL running l2switch with default
control applications and OF 1.0 SBI. We measure the best
RMSE for “avg TX event” and search time for the 60 trials.

Fig. 7 presents the best RMSE (bars, left y-axis) and
search time (line with dots, right y-axis) for NAS schemes
(x-axis). Among the four schemes, random search and
Bayesian optimization show the best RMSE under 0.2.
Greedy search and hyperband show much higher RMSE
values (up to 32× higher than random search). So, random
search and Bayesian optimization are candidates for control
traffic prediction.

Next, we further consider the search time between ran-
dom search and Bayesian optimization. The search time of
random search is 10% shorter than Bayesian optimization.
The experimental results reveal that random search exhibits
better efficiency in terms of time and accuracy. Thus, we
design the deep search based on the random search.

In addition, we set an early termination condition of

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0.0 0.2 0.4

CNN
DNN

XG
LG
RF

SVR
LR

2 4 6 8 10 100 200
Training time (s)

Fig. 8: Training time of each model.

0 20 40 60
0

10

20
40
80Avg RX event

Avg RX throughput
Max RX event
Max RX throughput
Avg TX event
Avg TX throughput
Max TX event
Max TX throughput

R
M

S
E

Trial

◯

◯

◯

◯
◯

◯

◯

(a) DNN / ONOS, OF 1.0

0 20 40 60
0

100
200

1000
3000

100000

400000

R
M

S
E

Trial

◯

◯

◯

◯
◯

(b) CNN / ONOS, P4

Fig. 9: RMSE over trials.

NAS to improve time and resource efficiency. The early
termination of the NAS is judged based on “touchstone
RMSE” that is the lowest average RMSE (best value) among
the five candidate models from the shallow search. This is
the “knowledge” learned from the shallow search because
the shallow pipeline takes relatively less time for training,
and it becomes the baseline for the deep pipeline.

Specifically, the deep search identifies candidate models
in the deep pipeline as follows. First, a set of hyperparam-
eters (Table 5) is randomly selected. Then, the deep search
performs a trial—a deep pipeline model is generated and
trained using 80% of dt2. The RMSE for the trained model
is calculated at the end of each trial using 20% of dt. The
deep search repeats the above search process until one of
the following criteria is met: 1) the RMSE of the trained
model is better than the touchstone RMSE, or 2) the number
of trials exceeds the threshold (n). The models trained before
the search is stopped become the candidate models, which
will be scored for the prediction robustness (§3.4).

The rationale for the criteria as termination conditions is
as follows. The first criterion, stopping based on the touch-
stone RMSE, is derived from the following observation. We
measure the training time of the candidate models in the
shallow pipeline and deep pipeline. The results are shown
in Fig. 8. Training all five shallow pipeline models takes 6.38
s on average, whereas training only a single deep pipeline
model (one trial) takes 63.07 s on average, which is 9.7×
longer. Because the deep search necessitates repeated trials
of the DNN and CNN models, the training time increases
significantly. So, we establish the first criterion to bound the
training time of deep pipeline models.

Second, to identify n, the maximum number of random
search trials, we conduct a series of experiments to measure
the RMSE after training the deep pipeline model. The pur-
pose of the experiments is to evaluate whether the number
of trials is related to the accuracy of the trained models.
Fig. 9a shows the DNN model training for ONOS with
OF 1.0 SBI, and Fig. 9b shows the CNN model training
for the same controller but a different SBI, P4. The x-axis
represents the number of trials, and the y-axis represents the
best (minimum) RMSE of the DNN models trained during
each trial. The circled part of each line corresponds to the
trial where the RMSE finally converges to the lowest value.
For example, at the number of trials 30, Avg RX throughput
in Fig. 9a and Max RX throughput in Fig. 9b show the
RMSE converges at its lowest values. In other words, the
prediction models ultimately converge to the best accuracy

2. We use the identical dataset for training both shallow and deep
pipeline algorithms because they have the same input features. The pre-
diction robustness on a different dataset is considered in the supreme
model derivation (§3.4).

by 30 trials. We also observe that the other SDN system
instances exhibit similar tendencies. However, note that the
massive differences in RMSE exist because the values to
predict (control traffic generated in SDN system instances)
in Fig. 9a and Fig. 9b are quite different. For instance,
the SDN system instance in Fig. 9b (ONOS, P4) consumes
10,938× more control traffic than the one (ONOS, OF 1.0) in
Fig. 9a on average. Since the values to predict vary greatly,
the range of RMSE also differs (10,573× on average).

In other words, the model space after the two-phase
search can contain from seven to 65 candidate models—five
from the shallow search and up to 60 from the deep search
(from one to 30 models per DNN and CNN).

3.4 Supreme Model Derivation

The final stage of Elixir is “supreme model derivation,”
which selects supreme models from the candidate models
(M={M i|i = 1, 2, ..., n} where n candidate models exist
and M i is the i-th candidate model). It is known that the
ML models show high accuracy on input features that have
similar distributions to the ones of training dataset (e.g.,
dependency between topology features, §3.1). However, the
prediction accuracy drops when the input features have
different distributions from those of the training dataset [21],
[22]. For example, we pick a prediction model having the
best RMSE value over the dt among the M , and conduct
predictions with the model on the new dataset. The new
dataset includes records for 2-tier (Fig. 10c) and 3-tier (Fig.
10d) topologies. Their input features form different distribu-
tions from linear (Fig. 10a) or complete binary tree (Fig. 10b)
topologies. Compared to the prediction accuracy on the dt,
the prediction accuracy on the new dataset drops by up to
150.7×. This problem has also been reported in other areas
such as image classification [21].

It is impossible to reflect all the possible network topolo-
gies in accordance with input feature distributions in dt. In-
stead, we incorporate “robustness,” a prediction power over
input features of different distributions (network topolo-
gies), into the selection of supreme models. Supreme model
derivation begins with M that has completed the training
process. For each M i, we conduct predictions against a
newly created dataset, called “robust dataset” (dr , to be
explained later). Then, we calculate the scores on the ro-
bustness based on the prediction results. We devise two
kinds of robustness scores (criteria) called RMSE robustness
(robust/RMSE) and frequent robustness (robust/freq), to
be explained later. We pick two candidate models, called
“contenders,” which show the best scores (one by RMSE
robustness and one by frequent robustness). We explain
the robustness scores (i.e., RMSE robustness and frequent

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

…

(a) linear (b) complete
binary tree

(c) 2-tier

…

(d) 3-tier

Fig. 10: Network topologies
for dt and dr .

1 2 3 4 5 6 7
0

25

50

75

100

C
on

tro
l t

ra
ffi

c
th

ro
ug

hp
ut

 (K
B/

s)

j

p(M2, dr
j)
p(M1, dr

j)dr
j

Fig. 11: Need for the
robust/freq scheme.

robustness) and the selection of the final supreme model in
the subsequent paragraphs, one by one.

RMSE robustness (robust/RMSE). To calculate robust-
ness scores, Elixir augments dt into dr . Specifically, half of
dr comes from dt. The remaining half of dr is augmented
with the new data records—created with the 2-tier (Fig.
10c) and 3-tier (Fig. 10d) topologies that have more link
connections between switches than linear (Fig. 10a) and
complete binary tree (Fig. 10b) topologies. dr consists of
records with different input distributions with dt, so the
prediction against dr shows the prediction robustness of M i.

Based on the augmented dr , Elixir performs predictions
for the output features for each M i. The score, robust/RMSE
of M i (denoted as sirm), is then calculated as the average
RMSE between the predicted and measured (real) values.
We select a candidate model with the minimum sirm as a
contender based on its robust/RMSE.

Frequent robustness (robust/freq). The second score is
robust/freq. The necessity of the robust/freq score comes
from the fact that the robust/RMSE alone may be insuffi-
cient for evaluating robustness. We present an example case
in Fig. 11. The x-axis presents data records of dr (with index
j), and the y-axis presents the avg RX throughput of each
data record. Dots in the solid line are the output features
(measured values), and the two bars are the predicted values
M1 and M2. M1 makes good predictions for the data
records except for j=3. In other words, M1 has a single and
significant error at j=3; the calculated s1rm and s2rm values
are 7.6 and 7.5, respectively, so the robust/RMSE criterion
selects M2 as a contender. However, M1 shows fewer errors
(RMSEs) than M2 for 86% of the data records (i.e., j=1, 2, 4,
5, 6, 7). Thus, the robust/RMSE criterion does not catch this
case when used alone as a criterion.

For this purpose, we develop robust/freq score. The
robust/freq score of M i (sifr) is calculated as Equation 2.
Equation 2 counts the number of times that M i showed
the best RMSE for each record in dr . So, sifr means that
the number of dr records on which M i shows the highest
prediction accuracy. After calculating the sifr values, Elixir
selects a candidate model with maximum sifr as a contender.

F (a, b) =

{
1, if a = b

0, otherwise
,

sifr =
∑
j

F (argmin
i

√
(p(M i, djr)− djr.output)2, i)

(2)

Final supreme model. Elixir finally selects a supreme
model from robust/RMSE and robust/freq. The final selec-
tion takes into consideration which of the criteria is more
lucrative for evaluating robustness. The contender from
robust/freq is advantageous only when it has an exclusively

TABLE 6: SDN system instances for evaluation.

Name Controller SBI Representative
control applications

FL-1.0-forwarding FL OF 1.0 ForwardingFL-1.3-forwarding OF 1.3
ODL-1.0-l2switch ODL OF 1.0 Layer 2 switch (l2switch),

LLDP, monitoringODL-1.3-l2switch OF 1.3
ONOS-1.0-fwd

ONOS

OF 1.0 Routing (reactive forwarding)ONOS-1.3-fwd OF 1.3
ONOS-1.3-mon OF 1.3 Routing, monitoring (1 s)
ONOS-1.3-arp OF 1.3 Routing, proxy ARP

ONOS-P4-routing P4 Routing, Stratum, NG-SDN
tutorial, monitoring (30 s)

higher sifr than the other models, implying that the robust
prediction frequency is concentrated in the contender. We
quantify the “exclusiveness in robust prediction frequency”
by dividing sifr of the contender from robust/freq by the
number of records in dr . We select the contender from
robust/freq as the supreme model only when the calculated
exclusiveness of frequency exceeds a threshold (k). If k is
under the threshold, the contender from robust/RMSE is
selected. We empirically set k to 44%, which yields the best
prediction accuracy in our system (for nine SDN system
instances). The determination of k on real-world scenarios
is discussed in §5.

4 IMPLEMENTATION AND EVALUATION

In this section, we first explain the implementation details
of the Elixir framework in §4.1. The following sections then
present evaluations, including evaluation settings (§4.2),
automated model formulation (§4.3), and prediction perfor-
mance (§4.4). The major findings are as follows:
• Elixir outperforms previous studies up to 10.6× by its

ML-based model formulation (§4.3).
• Through model space and supreme model derivation,

Elixir improves prediction robustness up to 80.4% (§4.4).
• Out of 72 cases, Elixir employs both shallow and deep

pipeline algorithms as supreme models (24% and 76%,
respectively), showing the reasonability of considering
the algorithms (§4.4).

4.1 Implementation
Owing to space limitations, we explain only the major pieces
of the Elixir implementation. The control plane of an SDN
system instance is containerized and used to produce output
parameters in the SDN-DAG. For the control plane, only
30, 24, and 18 LoCs are required for the containerization
of the ONOS, ODL, and FL controllers [47], [48], [49]. For
the data plane, network switches are emulated using Open
vSwitch, and hosts are created as separate containers. The
model space and supreme model derivation of Elixir are im-
plemented through TensorFlow 2.2, Scikit-Learn, and Keras
libraries. Through the Elixir implementation, the training
of prediction models of an SDN system instance takes
an average of 138.8 minutes (ranging from 101.4 to 183.7
minutes) using an NVIDIA RTX 2080Ti GPU. We release the
implementation of Elixir framework on GitHub [36].

4.2 Evaluation Settings
Elixir evaluation is conducted using nine different SDN
system instances (Table 6). The names in Table 6 refer to

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0

50

100
W2, W3

W1: upper boundW1: lower bound
Pe

rc
en

ta
ge

 e
rro

r
on

 p
re

di
ct

io
n

(S
M

AP
E,

 %
)

Elixir

ONOS,
event (W1)

ONOS,
throughput (W3)

ODL,
event (W2)

ODL,
throughput (W2)

Fig. 12: Prediction errors comparison.

“controller-SBI-control applications.” FL, ONOS, and ODL
controllers are selected because they are proven for practical
use (including more than 100 deployments such as AT&T
and T-Mobile [50]). For SBI, the numbers “1.0” and “1.3”
refer to OF 1.0 and OF 1.3, respectively. As FL, ODL,
and ONOS support OF, we test OF as SBI. For the con-
trol applications, we put the name of the major control
application running with the default applications of the
SDN system instance name. For example, “forwarding” of
FL, “l2switch” of FL, and “fwd” of ONOS are the packet
forwarding control applications. Also, “arp” and “mon”
of ONOS indicate proxy ARP processing from ONOS and
network monitoring, respectively.

We include the l2switch (ODL) and fwd (ONOS) with OF
1.0 because they have been modeled by DM. Then, we vary
the SDN system instances by adding 1) another SBI (e.g.,
OF 1.3), 2) additional SDN controller (e.g., FL), and 3) other
control applications such as monitoring and proxy ARP. The
monitoring interval of the ONOS is set as 1 s because 1 s is
the minimum amount that we can set without controller
implementation changes. Moreover, we include the P4 SBI
for the evaluation case. The P4 SBI has no specified protocol
on syntaxing the control traffic. The available operations
of the switch and control traffic can be customized, which
increases the modeling difficulty.

Next, to run ML algorithms, we use one NVIDIA RTX
2080Ti GPU of 11 GB GPU memory. We use the following
software libraries for ML on this machine: CUDA (version
10.2), TensorFlow (version 2.2), Scikit-Learn (version 0.19.1),
and Keras (version 2.11.0). The host side runs Ubuntu 18.04
on Intel Xeon Silver 4210 CPUs and 128 GB memory.

The evaluation consists of the following subsections:
• Automated Model formulation: Whether the Elixir can

accurately formulate prediction models than previous
studies (§4.3)

• Prediction robustness: Whether the supreme model of
the Elixir achieves better prediction accuracy in terms of
robustness (§4.4)
All predictions are conducted using the evaluation

dataset (de). To measure the prediction robustness, the aug-
mented records of dr (i.e., 2-tier and 3-tier topologies) make
up the de. Also, we add records of new topologies, such as 4-
ary, 6-ary, 8-ary, 8-host ISP, and 16-host ISP, to de. Shortly, de
includes records of topologies not used for model training
(model space) or supreme model derivation.

4.3 Automated Model Formulation
Here, we evaluate the automated model formulation ability
by comparing the prediction accuracy of models built by
Elixir with the DM models proposed in previous studies
[12], [13], [14]. The prediction accuracy is calculated by
SMAPE similar to §2.2. We use the notations W1, W2 and

W3 for the previous studies (defined in §2.2). For the corre-
sponding SDN system instances to W1, W2, and W3, Elixir
formulates the prediction models (supreme model). Fig. 12
presents the prediction errors. The average SMAPEs for the
DM models and Elixir are 64.18% and 13.41%, respectively;
thus, SMAPE is improved 4.78× on average, ranging from
2.8× (ONOS, event) to 10.6× (ODL, throughput).

Fig. 13 depicts a microscopic view of Fig. 12, as its x-
axis is a set of random selections of two data records of each
network topology in de. The y-axis of Fig. 13 is the measured
output and predicted output. Fig. 13a shows the number of
events in ONOS that W1 and Elixir predict. The prediction
from W1 has upper and lower bounds that are depicted by
black lines. Also, Fig. 13b is the amount of throughput in
ONOS predicted by W3 and Elixir. Figs. 13c and 13d are
the result of W2 and Elixir for the throughput and event for
ODL, respectively.

In the results, previous studies (line with × or + marks
in Fig. 13) mostly exceed or fall short of the actual measured
values (gray-colored bars), exhibiting large errors. In con-
trast, Elixir (red line with circle marks) shows results that
are relatively close to the actual values. Specifically, in Fig.
13a, the lower and upper bounds of W1 show 9.2× and 8.8×
higher errors on average than Elixir, each. Also, in Fig. 13b,
W3 shows 3.04× higher error than Elixir. In Figs. 13c and
13d, W2 show 3.71× and 5.46× higher errors in predicting
events and throughput of ODL than Elixir, respectively.

Compared to DM models (previous studies), Elixir im-
proves prediction accuracy for the following reasons. The
DM models are built on the limited number of control appli-
cations of an SDN system instance. For example, W1 and W2
cover only one control application running on ONOS and
ODL (i.e., fwd OF 1.0 and l2switch with OF 1.0). W3 covers
more control applications on ONOS (two deep le types) but
less than the default applications running on ONOS (seven
types). In contrast, Elixir generates prediction models based
on the datasets that reflect all control applications running
on the SDN system instance. Thus, the above results show
that the prediction models of Elixir are generalizable to
control applications.

Moreover, to our knowledge, maximum control traffic
(i.e., max TX event, max TX throughput, max RX event,
and max RX throughput) has not been predicted in the
literature. This is because DM requires a causal relation-
ship for maximum traffic; however, such a relationship is
much more challenging to grasp due to its complexity—
for example, peak traffic consumption is difficult to model
from stochastic mechanisms (e.g., implementation of control
applications and the message size of SBI) that humans
can perceive. In contrast, using the dataset, Elixir reflects
relationships that are difficult to catch. Considering that
the prediction of maximum control traffic is paramount for
bottleneck prevention and resource provisioning, Elixir has
an obvious benefit.

4.4 Prediction Performance

Here, we investigate the prediction robustness achieved by
supreme model selection. The prediction robustness of the
supreme models from Elixir is compared to that of models
that do not undergo the supreme model derivation. The

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

0
10
20

200

400

600

4-ary
fat-
tree

6-ary
fat-
tree

16-
host
ISP

8-
host
ISP

8-ary
fat-
treeN

um
be

r o
f e

ve
nt

s
pe

r s
ec

on
d

Ground truth (real value)
upper bound
Elixir

lower bound

(a) ONOS, event, W1.

0

50

100

150

200

W3
Ground truth (real value)

Elixir

Th
ro

ug
hp

ut
 (K

B)
 p

er
 s

ec
on

d

4-ary
fat-
tree

6-ary
fat-
tree

16-
host
ISP

8-
host
ISP

8-ary
fat-
tree

(b) ONOS, throughput, W3.

0

200

400

600

W2
Ground truth (real value)

Elixir

Th
ro

ug
hp

ut
 (K

B)
 p

er
 s

ec
on

d

4-ary
fat-
tree

6-ary
fat-
tree

16-
host
ISP

8-
host
ISP

8-ary
fat-
tree

(c) ODL, throughput, W2.

0

200

400

600

W2
Ground truth (real value)

Elixir

N
um

be
r o

f e
ve

nt
s

pe
r s

ec
on

d

4-ary
fat-
tree

6-ary
fat-
tree

16-
host
ISP

8-
host
ISP

8-ary
fat-
tree

(d) ODL, event, W2.
Fig. 13: Prediction results obtained for representative data records.

latter models are referred to as “naïve” models. The naïve
model is one of the candidate models in the model space,
and it has the lowest prediction error (RMSE) on 20% of
dt, not on dr of supreme model selection. We formulate the
supreme models and naïve models for nine SDN system
instances (Table 6). Also, for each SDN system instance,
eight prediction models per individual output feature are
chosen. Thus, 72 supreme and 72 naïve models are obtained.

Prediction accuracy. We compare the prediction accu-
racy of the supreme and naïve models. For both models,
prediction is made against de, which contains new records
(network topologies) that are not used in either model
training or selection. Fig. 14 shows the heatmaps that illus-
trate prediction accuracy improvement. The x and y axes
represent the SDN system instance and output features,
each. We compute sirm (Fig. 14a) and sifr (Fig. 14b), which
are used to account for prediction robustness in supreme
model selection. Then, for each output feature, we collect the
maximum improvement values from sirm or sifr and present
the values in Fig. 14c. Fig. 14c is presented to determine
whether at least one of the sirm or sifr is improved.

In Fig. 14a, we show the improved sirm, which is cal-
culated by dividing sirm of the supreme models by that of
naïve model. A higher percentage signifies greater improve-
ment, whereas 0% indicates no improvement. The darker
the cell of Fig. 14a, the larger the improvement. Among
the 72 models compared, 72% (52 models) exhibit improved
prediction accuracy. The improved models indicate an av-
erage of 12.1%, including a maximum improvement of
58.1% (ODL-1.0-l2switch, avg RX throughput). The average
prediction accuracy for all 72 models increases by 7.6%.

Fig. 14b shows the increased sifr of supreme models. We
calculate the increased sifr by subtracting sifr of the naïve
models from that of the supreme model. A larger value
indicates a greater improvement of accurate prediction fre-
quency. From the results, 43 supreme models (59.7%) exhibit
better sifr , with an average improvement of 12.6% and a
maximum improvement of 51.9% (ONOS-1.3-arp, Avg RX
throughput). On average, all 72 models improve by 6.2%.

In Fig. 14c, we check whether at least one of the two
metrics has improved. From a total of 72 models, 57 (79.2%)
are improved, 13 have similar errors (18.1%), and two (only
2.7%) have greater errors. For the models with improved
performance, either one of the two metrics improves by an
average of 16.5%. For the entire models, the metrics improve
13% on average. Considering that the majority of models
improve either one of the two metrics, we believe that the
supreme model selection scheme is reasonable.

Prediction robustness. We validate the prediction ro-

bustness of Elixir. The prediction robustness is to reduce
the amount of increased error when the dataset changes.
We measure the prediction robustness by computing the re-
duction in prediction errors on changing the dataset. Specif-
ically, we perform the following. We begin by conducting
predictions on dt (used for model training) and de (used
for robustness evaluation) through the naïve and supreme
models in Fig. 14. For each naïve and supreme model, the
RMSE of de inference is divided by dt inference, which we
denote as “robustness error.” Then, we get robustness errors
of naïve and supreme models.

Fig. 15a shows the robustness errors of naïve and
supreme models. For each SDN system instance, eight mod-
els for eight output features exist. We average the robustness
error of the eight models (SDN system instance. In Fig. 15a,
the errors of supreme models (lines with circles) are normal-
ized to the value of naïve models (lines with × marks). All
nine SDN system instances show lower robustness errors on
supreme models. On average, supreme models show 38.1%
lower robustness errors than naïve models.

Next, we show the robustness error improvement for
72 individual models. We calculate the improvement by
dividing the robustness error of the naïve model by that of
the supreme model. For instance, 20% improvement means
that the supreme model shows 20% lower robustness error
than the naïve model. The y-axis of Fig. 15b displays the cal-
culated prediction robustness according to each SDN system
instance (x-axis). Among the 72 models, 58 models (80.6%)
reduce the robustness error by an average of 41.9%. The
maximum improvement is 80.44% of avg RX throughput
of ONOS-1.3-fwd. The other models exhibit similar or poor
robustness errors, but the amount of increase is only 1.3%.
The evaluation results reveal that the design for prediction
robustness in Elixir is considerably effective in formulating
prediction models for dynamic SDN system instances.

ML algorithms. Here, we explain the distributions of
the ML algorithms selected as supreme models. 24% of the
models trained in Fig. 14 are from shallow algorithms, and
the remaining 76% are from deep algorithms. Specifically,
XG is the most frequently used among shallow algorithms
(for 7%). For deep algorithms, DNN and CNN are used
53% and 23%, respectively. In general, shallow algorithms,
such as RF, have fewer parameters in their models, so the
algorithms are prone to be overfitted to dt. The results of
supreme models show that the model selected based on
robustness includes numerous deep algorithms to enhance
the prediction robustness. Meanwhile, shallow algorithms
are successful in SDN systems with little complexity in
predicting control traffic. This is because the relatively fewer

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Avg TX event
Avg TX throughput

Max TX event
Max TX throughput

Avg RX event
Avg RX throughput

Max RX event
Max RX throughput

FL-1.
0-forw

ardin
g

FL-1.3-forwarding

ODL-
1.0-l2

switc
h

ODL-1.3-l2switch

ONO
S-1.0

-fwd

ONO
S-1.3

-fwd

ONO
S-1.3

-mon

ONO
S-1.3

-arp

ONO
S-P4

-routi
ng

(a) sirm comparison.
FL-1.

0-forw
ardin

g

FL-1.
3-forw

ardin
g

ODL-
1.0-l2

switc
h

ODL
-1.3-l

2swit
ch

ONO
S-1.0

-fwd

ONO
S-1.3

-fwd

ONO
S-1.3

-mon

ONO
S-1.3

-arp

ONO
S-P4

-routi
ng

(b) sifr comparison.

<0%
0%
<20%
<40%
<60%
>60%

FL-1.
0-forw

ardin
g

FL-1.
3-forw

ardin
g

ODL-
1.0-l2

switc
h

ODL
-1.3-l

2swit
ch

ONO
S-1.0

-fwd

ONO
S-1.3

-fwd

ONO
S-1.3

-mon

ONO
S-1.3

-arp

ONO
S-P4

-routi
ng

(c) aggregated comparison.
Fig. 14: Robust prediction error improvement.

0.0

0.5

1.0

Naïve Supreme

R
ob

us
tn

es
s

er
ro

r
(n

or
m

al
iz

ed
 to

 n
aï

ve
)

FL
-1.
0-

for
wa
rdi
ng

FL
-1.
3-

for
wa
rdi
ng

OD
L-1
.0-

l2s
wit
ch

OD
L-1
.3-

l2s
wit
ch

ON
OS
-1.
0-f
wd

ON
OS
-1.
3-f
wd

ON
OS
-1.
3-m
on

ON
OS
-1.
3-a
rp

ON
OS
-

P4
-ro
uti
ng

(a) robustness errors.

0

50

100 Avg TX event Avg TX throughput Max TX event Max TX throughput
Avg RX event Avg RX throughput Max RX event Max RX throughput

R
ob

us
tn

es
s

er
ro

r
im

pr
ov

em
en

t (
%

)

FL-1.0-
forwarding

FL-1.3-
forwarding

ODL-1.0-
l2switch

ODL-1.3-
l2switch

ONOS-
1.0-fwd

ONOS-
1.3-mon

ONOS-
1.3-arp

ONOS-
P4-routing

ONOS-
1.3-mon

(b) individual model improvement.
Fig. 15: Improvement of robust prediction.

parameters and simple structures required allow the model
to be concentrically trained on the core causal relation-
ships of the low-complexity system. It is worth noting that
supreme models use both shallow (24%) and deep algo-
rithms (76%), demonstrating that Elixir properly considers
the characteristics of ML algorithms and the complexity of
the SDN system instance.

5 DISCUSSION

SDN-DAG in practice. We discuss the data generation
time and the difference between the emulated data from
the SDN-DAG and the real-world data. First, for the data
generation, creating 2K data records with eight parallel
SDN-DAG instances takes 10 to 12 hours, which could
decrease with a greater number of instances. Second, for
the emulated data, our implementation covers the major
functions of in-practice SDN as SDN primarily aims to
softwarize each network component. Thus, we believe that
ML models based on this are similar to real-world situations.

Final supreme model threshold (k). As our work fo-
cuses on building domain-specific solutions, we set the
value k empirically, resulting in the best prediction accu-
racy in SDN systems. Specifically, we prepare realistic SDN
systems as follows. For the control plane, we test various
real-world SDN controllers (e.g., ONOS, FL, and ODL) and
run their control applications. For the data plane, we execute
various physical network topologies used in real-world
scenarios, such as linear, two-tier tree, three-tier tree, and fat-
tree topology. The topology consists of OpenFlow switches
created by Open vSwitch and Mininet, the most widely-
used framework for evaluating SDN systems as production
networks for research and validation [51]. Note that these
configurations are the ones used in previous works to model
real-world control traffic as well [12], [13], [14]. We find
the value 44% in the above setting, so we believe that the
value is applicable in real-world scenarios because real-
world SDN controllers and control applications are used.

However, we recognize that 44% may not be optimal in
every case. We investigate how prediction accuracy (error)
changes as the k value varies (sensitivity). When the k value
is set to 80% (1.8× higher than the optimal value) for nine

different SDN system instances used in our experiments, the
average prediction errors differ by 7.2% from that with 44%.
When the k value is set at 10% (0.2× the optimal value),
the average prediction errors differ by 16.9%. Compared
to the changes in k values (0.2× to 1.8×), the variances in
prediction errors are relatively small (7.2% to 16.9%).

Time complexity of model space. We compare the
time complexity of our approach to that of grid search.
Grid search is 1) to train various models on every possible
combination of model structures and hyperparameters and
2) to select the model with the highest accuracy as the
appropriate model. Suppose ni is the number of possible
values of the i-th hyperparameter or model structure. The
time complexity of grid search is O(

∏
i ni). On the other

hand, our model space is designed based on random search
that restricts the number of maximum training trials. We
meticulously design our own criteria for search termination,
ensuring that the number of search trials is bounded at a
certain integer (i.e., 30, details in §3.3). The time complexity
of Elixir is O(1), which is highly efficient. However, Elixir
searches models with accuracy similar to grid search.

Model search trial and prediction accuracy. In our
experiments, there are cases where the number of trained
models in the model space is less than 65. For example, for
the SDN system instance ONOS-1.3-arp, the total number of
trained candidate models is 19 when the touchstone RMSE
is met, comprising five from the shallow pipeline models
and 14 from the deep pipeline models (four DNNs and 10
CNNs). In this case, even though the number of trained
models is below the upper bound of 65, its robust prediction
improvement is 1.96× better than the other SDN system
instances that search for models up to the upper bound (e.g.,
ONOS-1.3-forwarding, FL-1.0-forwarding) on average. We
experiment how the best RMSE changes over the number
of trials. The results are in Fig. 9, and it exhibits that for all
cases, the best RMSE occurs before 30 trials. So we believe
that experiments with 65 trained models are sufficient to
ensure the accuracy of Elixir.

Other NAS methods. One might wonder why Elixir
does not utilize the existing NAS methods. Due to the
following reasons, Elixir has to devise its own method. First,

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

existing NAS methods (e.g., Google Model Search [52]) find
models predicting discrete values (e.g., dog or cat). So, they
mostly focus on supporting classification problems. How-
ever, since the control channel performance is continuous,
they have to be tailored for predicting “continuous” values
(e.g., regression). Second, the NAS methods are primarily
based on the ensemble that assembles prediction models
from pre-defined ML algorithms [53]. However, the control
channel needs prediction on continuous values, and we
find that more algorithms (than NAS provides) need to be
explored to obtain reasonable accuracy (§4.4).

6 CONCLUSION

We present Elixir, a framework to build control traffic pre-
diction models by employing ML. Through SDN-DAG, the
dataset for training is generated. Elixir introduces the model
space that includes prediction models made from several
ML algorithms, and the models are searched and trained.
Finally, the supreme model is derived among the prediction
models. Advantages of Elixir include the following: 1) it
does not require any collection of datasets, 2) Elixir auto-
mates the prediction model formulation on heterogeneous
SDN systems, and 3) the supreme models achieve prediction
robustness over different network topologies. Through com-
prehensive evaluations, the prediction errors are improved
up to 10.6× compared with existing studies.

As a framework, Elixir has two characteristics: first, it
can build prediction models for any SDN system instance
even when the controller or SBI is changed. This means
that as SDN controllers are newly released every quarter
and SBI protocols continuously evolve, Elixir can be viable
to provide the adaptation to such changes in SDN system
instances. Second, Elixir is fully automated to generate the
dataset and perform training without manual intervention.
Thus, Elixir can help design (particularly large-scale) SDN
systems with the prediction of their control traffic.

REFERENCES

[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication. ACM, 2015, p. 183–197.

[2] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. N. B.,
C. Bhagat, S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett,
F. Rabe, S. Ray, M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong,
and A. Vahdat, “B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s software-
defined wan,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 2018, p. 74–87.

[3] A. D. Ferguson, S. Gribble, C.-Y. Hong, C. Killian, W. Mohsin,
H. Muehe, J. Ong, L. Poutievski, A. Singh, L. Vicisano, R. Alimi,
S. S. Chen, M. Conley, S. Mandal, K. Nagaraj, K. N. Bollineni,
A. Sabaa, S. Zhang, M. Zhu, and A. Vahdat, “Orion: Google’s
Software-Defined networking control plane,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX, Apr. 2021, pp. 83–98.

[4] “SD-Fabric,” (Accessed on 11/15/2022). [Online]. Available:
https://opennetworking.org/sd-fabric/

[5] M.-P. Odini and A. Manzalini, “SDN in NFV architectural frame-
work,” IEEE Software Defined Networks Newsletter, 2016.

[6] “Open network operating system (ONOS) SDN controller
for SDN/NFV solutions,” (Accessed on 12/29/2021). [Online].
Available: https://opennetworking.org/onos/

[7] M. Karakus and A. Durresi, “A survey: Control plane scalability
issues and approaches in software-defined networking (SDN),”
Computer Networks, vol. 112, pp. 279 – 293, 2017.

[8] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking. ACM, 2013, p. 55–60.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proceedings of the ACM SIGCOMM 2011
Conference. ACM, 2011, p. 254–265.

[10] L. Zhu, M. M. Karim, K. Sharif, C. Xu, F. Li, X. Du, and M. Guizani,
“SDN controllers: A comprehensive analysis and performance
evaluation study,” ACM Comput. Surv., vol. 53, no. 6, dec 2020.

[11] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller
placement in sdn,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 1, pp. 472–503, 2020.

[12] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of ONOS reactive forwarding applications in ISP
networks,” Computer Communications, vol. 102, p. 130–138, 2017.

[13] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone,
“Evaluating the SDN control traffic in large ISP networks,” in 2015
IEEE International Conference on Communications, 2015, pp. 5248–
5253.

[14] B. Yu, G. Yang, and C. Yoo, “Comprehensive prediction models of
control traffic for SDN controllers,” in 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), 2018, pp. 262–266.

[15] P. C. Austin, F. E. Harrell Jr, and E. W. Steyerberg, “Predictive
performance of machine and statistical learning methods: Impact
of data-generating processes on external validity in the “large n,
small p” setting,” Statistical methods in medical research, vol. 30,
no. 6, pp. 1465–1483, 2021.

[16] A.-L. Boulesteix and M. Schmid, “Machine learning versus sta-
tistical modeling,” Biometrical Journal, vol. 56, no. 4, pp. 588–593,
2014.

[17] S. Ahmad and A. H. Mir, “Scalability, consistency, reliability and
security in SDN controllers: A survey of diverse SDN controllers,”
Journal of Network and Systems Management, vol. 29, no. 1, pp. 1–59,
2021.

[18] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu,
“A survey of machine learning techniques applied to software
defined networking (SDN): Research issues and challenges,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 393–430, 2019.

[19] L. Tuggener, M. Amirian, K. Rombach, S. Lörwald, A. Varlet,
C. Westermann, and T. Stadelmann, “Automated machine learning
in practice: state of the art and recent results,” in 2019 6th Swiss
Conference on Data Science (SDS). IEEE, 2019, pp. 31–36.

[20] M. A. Munson, “A study on the importance of and time spent on
different modeling steps,” ACM SIGKDD Explorations Newsletter,
vol. 13, no. 2, pp. 65–71, 2012.

[21] M. Cauchois, S. Gupta, A. Ali, and J. C. Duchi, “Robust valida-
tion: Confident predictions even when distributions shift,” arXiv
preprint arXiv:2008.04267, 2020.

[22] M. Cauchois, S. Gupta, and J. Duchi, “Knowing what you know:
valid and validated confidence sets in multiclass and multilabel
prediction,” arXiv preprint arXiv:2004.10181, 2020.

[23] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A
comprehensive survey of interface protocols for software defined
networks,” Journal of Network and Computer Applications, vol. 156,
p. 102563, 2020.

[24] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[25] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas, “SDN con-
troller placement at the edge: Optimizing delay and overheads,”
in IEEE Conference on Computer Communications, 2018, pp. 684–692.

[26] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Performance eval-
uation of a scalable software-defined networking deployment,” in
2013 Second European Workshop on Software Defined Networks, 2013,
pp. 68–74.

[27] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,”
in 2nd USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services. USENIX, Apr. 2012.

[28] M. Karakus and A. Durresi, “A scalability metric for control
planes in software defined networks (SDNs),” in 2016 IEEE 30th

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://opennetworking.org/sd-fabric/
https://opennetworking.org/onos/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

International Conference on Advanced Information Networking and
Applications (AINA), 2016, pp. 282–289.

[29] G. Yang, Y. Yoo, M. Kang, H. Jin, and C. Yoo, “Accurate and effi-
cient monitoring for virtualized sdn in clouds,” IEEE Transactions
on Cloud Computing, vol. 11, no. 1, pp. 229–246, 2023.

[30] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier, “Inter-
controller traffic in ONOS clusters for SDN networks,” in 2016
IEEE International Conference on Communications, 2016, pp. 1–6.

[31] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4,
pp. 679–688, 2006.

[32] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing per-
formance prediction robustness by combining analytical modeling
and machine learning,” in 6th ACM/SPEC international conference
on performance engineering, 2015, pp. 145–156.

[33] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A com-
parative analysis of data center network architectures,” in Interna-
tional Conference on Communications. IEEE, 2014, pp. 3106–3111.

[34] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid, “Ef-
ficient loop-free rerouting of multiple SDN flows,” IEEE/ACM
Transactions on Networking, vol. 26, no. 2, pp. 948–961, 2018.

[35] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data
imbalance in classification: Experimental evaluation,” Information
Sciences, vol. 513, pp. 429 – 441, 2020.

[36] Y. Yoo, G. Yang, C. Shin, J. Lee, and C. Yoo, “Elixir:
machine learning-based prediction model formulation framework
for control traffic in SDN systems.” [Online]. Available:
https://github.com/yeonhooy/Elixir

[37] M. Mongelli, T. De Cola, M. Cello, M. Marchese, and F. Davoli,
“Feeder-link outage prediction algorithms for SDN-based high-
throughput satellite systems,” in 2016 IEEE International Conference
on Communications, 2016, pp. 1–6.

[38] R. Pasquini and R. Stadler, “Learning end-to-end application QoS
from OpenFlow switch statistics,” in 2017 IEEE Conference on
Network Softwarization (NetSoft), 2017, pp. 1–9.

[39] C. Sieber, A. Obermair, and W. Kellerer, “Online learning and
adaptation of network hypervisor performance models,” in 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2017, pp. 1204–1212.

[40] G. Yeung, D. Borowiec, A. Friday, R. Harper, and P. Garraghan,
“Towards GPU utilization prediction for cloud deep learning,” in
12th USENIX Workshop on Hot Topics in Cloud Computing, Jul. 2020.

[41] B. Eftekhar, K. Mohammad, H. E. Ardebili, M. Ghodsi, and
E. Ketabchi, “Comparison of artificial neural network and logistic
regression models for prediction of mortality in head trauma
based on initial clinical data,” BMC medical informatics and decision
making, vol. 5, no. 1, pp. 1–8, 2005.

[42] P. Christoffersen and K. Jacobs, “The importance of the loss func-
tion in option valuation,” Journal of Financial Economics, vol. 72,
no. 2, pp. 291 – 318, 2004.

[43] S. Qian, H. Liu, C. Liu, S. Wu, and H. S. Wong, “Adaptive activa-
tion functions in convolutional neural networks,” Neurocomputing,
vol. 272, pp. 204 – 212, 2018.

[44] B. Hanin and D. Rolnick, “How to start training: The effect of
initialization and architecture,” in Advances in Neural Information
Processing Systems, vol. 31, 2018, pp. 571–581.

[45] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer
search with reinforcement learning,” 2017.

[46] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, p. 281–305, Feb. 2012.

[47] “onosproject/onos Dockerfile - Docker Hub,” (Accessed on
01/02/2023). [Online]. Available: https://hub.docker.com/r/
onosproject/onos/dockerfile

[48] “glefevre/floodlight Dockerfile - Docker Hub,” (Accessed on
12/22/2022). [Online]. Available: https://hub.docker.com/r/
glefevre/floodlight/dockerfile

[49] “docker-opendaylight/Dockerfile,” (Accessed on 01/02/2023).
[Online]. Available: https://github.com/sfuhrm/
docker-opendaylight/blob/master/Dockerfile

[50] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and
H. L. Owen, “Advancing software-defined networks: A survey,”
IEEE Access, vol. 5, pp. 25 487–25 526, 2017.

[51] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[52] “google/model_search,” (Accessed on 12/15/2022). [Online].
Available: https://github.com/google/model_search

[53] “Vertex AI | google cloud,” (Accessed on 12/15/2022).
[Online]. Available: https://cloud.google.com/vertex-ai/docs/
tabular-data/overview#classification_and_regression_with

Yeonho Yoo [GSM] received his B.S. degree
in computer science from Kookmin University,
Seoul, Republic of Korea, in 2017, and his M.S.
degree in computer science from Korea Univer-
sity, Seoul, Republic of Korea in 2021. He is
currently pursuing his Ph.D. degree with Korea
University. He worked as a research intern at
Microsoft Research Asia in 2023. His current
research interests include network virtualization,
SDN, datacenter systems, and AI systems.

Gyeongsik Yang [M] received his B.S., M.S.,
and Ph.D. degrees in computer science from
Korea University, Seoul, Republic of Korea, in
2015, 2017, and 2019, respectively. He worked
as a research intern at Microsoft Research Asia
and as a research professor at Korea University.
He is currently an assistant professor in the De-
partment of Computer Science and Engineering
at Korea University. His research interests in-
clude operating systems, AI systems, datacenter
systems, network virtualization, and SDN.

Changyong Shin [GSM] received his B.S. de-
gree in computer science from Korea Univer-
sity, Seoul, Republic of Korea, in 2021. He is
currently pursuing his Ph.D. degree with Korea
University, Seoul, Republic of Korea. His cur-
rent research interests include distributed deep
learning systems, cloud orchestration, and SDN.

Junseok Lee received his B.S degree in electri-
cal engineering from Kyeonghee University, Yon-
gin, Republic of Korea, in 2022. He is currently
pursuing his M.S degree with Korea University,
Seoul, Republic of Korea. His current research
interests include SDN, datacenter systems, and
blockchain.

Chuck Yoo [M] received his B.S. and M.S. de-
grees in electronic engineering from Seoul Na-
tional University, and M.S. and Ph.D. degrees in
computer science from the University of Michi-
gan, Ann Arbor. He worked as a researcher at
Sun Microsystems. Since 1995, he has been
at the College of Informatics at Korea Univer-
sity, where he is currently a professor. His re-
search interests include server/network virtual-
ization and operating systems.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3324007

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/yeonhooy/Elixir
https://hub.docker.com/r/onosproject/onos/dockerfile
https://hub.docker.com/r/onosproject/onos/dockerfile
https://hub.docker.com/r/glefevre/floodlight/dockerfile
https://hub.docker.com/r/glefevre/floodlight/dockerfile
https://github.com/sfuhrm/docker-opendaylight/blob/master/Dockerfile
https://github.com/sfuhrm/docker-opendaylight/blob/master/Dockerfile
https://github.com/google/model_search
https://cloud.google.com/vertex-ai/docs/tabular-data/overview#classification_and_regression_with
https://cloud.google.com/vertex-ai/docs/tabular-data/overview#classification_and_regression_with

	Introduction
	Background, Motivation, and Goal
	Background
	Related Work and Goal

	Elixir Design
	SDN System Specification (Features of Models)
	Dataset Generator (SDN-DAG)
	Model Space
	Supreme Model Derivation

	Implementation and Evaluation
	Implementation
	Evaluation Settings
	Automated Model Formulation
	Prediction Performance

	Discussion
	Conclusion
	References
	Biographies
	Yeonho Yoo [GSM]
	Gyeongsik Yang [M]
	Changyong Shin [GSM]
	Junseok Lee
	Chuck Yoo [M]

