
Efficient Big Link Allocation Scheme in
Virtualized Software-defined Networking

Wontae Jeong†, Gyeongsik Yang†, Seong-Mun Kim, Chuck Yoo
College of Informatics, Korea University, Seoul, South Korea

Email: wtjeong@os.korea.ac.kr, ksyang@os.korea.ac.kr, soulcrime@korea.ac.kr, chuckyoo@os.korea.ac.kr

Abstract—We propose an efficient resource allocation scheme
for big links in virtualized software-defined networking. Network
virtualization based on software-defined networking provides big
link concept to facilitate simple network management – big link
maps a set of switches and links into a single virtual link.
However, this paper reports an issue of the big link in that there
is a severe performance degradation in virtualized SDN environ-
ments. We find the cause: the existing network hypervisors do not
consider the network traffic when allocating physical resources
to a big link. To address this issue, we present big link allocation
scheme (BAS) that considers network traffic when allocating and
reallocating resources to a big link. A prototype implementation
is done with OpenVirteX, and experiments demonstrate that
the big link with BAS achieves four times greater throughput
than that of the big link without BAS. Moreover, by including
a timer in OpenVirteX, the BAS decreases unnecessary resource
reallocations, which reduces overhead.

I. INTRODUCTION

Network virtualization has become an important technique

for providing various services over a single physical network.

Many widely used virtualization techniques, such as VxLAN

[1], GRE [2], MPLS [3], have been proposed; however, fine

control and flexible programming of each virtual network re-

main challenging. Due to the distributed nature of physical net-

works, most previous studies relied on tunneling between het-

erogeneous networks. However, software-defined networking

(SDN) presents new possibilities for network virtualization.

SDN decouples the control and data planes and centralizes

control functions in the controller. With this centralized entity,

global resource management becomes possible, and many

virtualization methods [4], [5], [6], [7], [8] with centralized

control planes have been proposed. They provide abstractions

such as virtual topology, address, and policy for each tenant.

Many network virtualization solutions provide big link and

big switch for virtual topology. This paper focuses on the

big link which is a topology abstraction for a set of physical

resources, such as physical links and switches. With the big

link, each tenant can create an arbitrary virtual network and its

topology. Especially, by selecting only physical resources the

†The first two authors contributed equally to this work.∗This work was supported by Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(2016-0-00124, Research of Network Virtualization Platform and Service for
SDN 2.0 Realization). This research was also supported by the MSIT(Ministry
of Science and ICT), Korea, under the SW Starlab support program(2015-0-
00280) supervised by the IITP(Institute for Information & communications
Technology Promotion).

tenant wants to use from the entire physical network, network

virtualization can reduce the network size. In addition, a big

link that abstracts multiple physical resources into one virtual

resource further reduces the management complexity.

Previous study [6] has attempted to provide big links that

exploit these advantages; however, such study focused on

generating and providing the big links themselves. The big

resource needs physical resource allocation, but the previous

study calculates the allocable resources without consideration

of physical network traffic. In Section III, we show that such

study results in approximately 50% performance degradation

compared to optimal allocations.

To overcome the link throughput degradation from the

physical resource allocation, we propose a big link allocation

scheme (BAS). The goal of the BAS is to provide efficient

resource allocation to increase big link throughput. The pro-

posed BAS consists of three phases: initialization (BAS-I),

allocation of physical resources (BAS-II), and reallocation

(BAS-III). Moreover, we develop a link throughput measure-

ment and cost calculation process for the resource allocation

in consideration of network traffic. With this process, BAS-II

attempts to efficiently find optimal resources to be allocated

to a big link at a given time. In addition, we propose BAS-

III to increase throughput by reallocating physical resources

when traffic load from other virtual networks are created after

physical resources are allocated to the big link. In addition, to

reduce reallocation overhead, we propose loss avoidance and

synchronous hard reallocation technique that reduce packet

loss and traffic fluctuations efficiently.

We implement BAS on the OpenVirteX (OVX) [6], which

is an SDN-based network hypervisor and evaluate BAS using

an emulated physical network [9]. The experimental results

demonstrate that the proposed BAS improves performance

degradations by four times compared to the original OVX and

does not increase overhead significantly.

II. BACKGROUND

SDN-based virtualization is implemented through a network

hypervisor located between network controllers and switches.

To switches, network hypervisor is viewed as a controller,

and simultaneously as switches to the network controllers.

Therefore, the primary functions of the network hypervisor

are to provide physical network abstractions and translate

management messages from controllers and vice versa. The

978-3-901882-98-2 c© 2017 IFIP

main abstractions used in network hypervisors are virtual

addresses and topologies.

Each virtual network can select arbitrary address for their

host, which is called virtual address for the host. Therefore,

the network hypervisor should translate virtual addresses to

avoid address conflicts between different virtual networks.

The translation is called address virtualization, and various

methods [6], [10] have been proposed. The OVX uses one-

to-one address mapping for IP address virtualization. OVX

allocates one physical IP address for each virtual IP address.

The upper 8 bits of the physical IP address signify the virtual

network (tenant ID) and the remaining bits are used to identify

the hosts in each virtual network (host ID).

In addition, a virtual topology can be created over the phys-

ical network topology. The components of a virtual topology

are virtual switches, virtual links, and hosts. Virtual links can

be divided into two groups: one-to-one and big link. A one-to-

one link maps a single physical link to a virtual link. Network

slicing is a representative example of a one-to-one link. A big

link maps a path on the virtual link. Thus, the big link contains

a set of physical switches and links. To realize the abstraction,

the network hypervisor is tasked with finding and allocating an

appropriate path to transfer data between two given physical

ports. In specific, creating a big link in the network hypervisor

is performed as follows: 1) initialize the big link abstractions,

2) calculate the allocable physical resources to the big link,

and 3) install the flow rules for each traffic to the allocated

switches reactively.

III. BIG LINK THROUGHPUT DEGRADATION

Here, we discuss the motivation for our study. In a multi-

tenant network where various virtual networks co-exist within

a single physical network, traffic from each virtual network can

affect other virtual networks. However, the previous studies do

not consider about it. The previous network hypervisor, OVX,

uses the shortest path first routing algorithm to get allocable

physical resources to the big link. However, the cost for each

physical link of the routing algorithm is identical. Moreover,

once the physical resources are allocated to the virtual link,

no reallocation occurs even if other physical network resources

become idle.

To observe the influence of the design, we experiment the

link throughput of a big link as follows. We use Mininet [9] for

physical network emulation and the OVX network hypervisor,

which provides the richest topology abstraction. Fig. 1 shows

the experimental topology. We create the first virtual network

(VN1) in the linear form (H1–S1–S2–S3–S4–S5–S10–S11–

H3). Then, Iperf3 is used to generate traffic flows between

hosts H1 and H3. After the traffic flows on VN1, we create

another virtual network (VN2) between hosts H2 and H4. This

topology includes two switches and a single big link in the

linear form (H2–S1–S11–H4). After creating VN2, Iperf3 is

used to generate traffic flows between hosts H2 and H4, as

well as to measure the maximum throughput between these

hosts. To observe the effect of the physical network traffic,

Physical network

S5S4S3

S6 S7 S8 S9

S10 S11S1 S2
H1

H2

H3

H4

1Gbps link1Gbps link 100Mbps link

Fig. 1. Topology for big link throughput experiments

20
40
60
80

100

0 10 20 30 40 50 60

Bi
g

lin
k

th
ro

ug
hp

ut

(M
bp

s)

Network bottleneck traffic (Mbps)

Fig. 2. Big link throughput degradation due to the traffic load on other virtual
networks

we vary the load of the VN1. Fig. 2 shows the throughput of

the big link in the VN2 for various traffic load of VN1.

Since the network hypervisor does not reflect the increased

VN1’s traffic to its routing algorithm, in the physical topology

shown in Fig. 1, the big link is mapped to S2–S3–S4–S5–S10.

When the traffic loads of VN1 increase, the big link throughput

decreases, because the VN1 and VN2 both shares the same

physical resources. The better throughput can be achieved if

the big link is mapped to switches S2–S6–S7–S8–S9–S10,

which are idle.

The reason for this throughput decline is that the network

hypervisor does not consider existing traffic when allocating

resources and does not alter the allocated resources. To address

the issues, the proposed BAS involves the following.

• Traffic-aware resource allocation schemes for a big link

• Reallocation of physical resources to overcome perfor-

mance degradation caused by traffic flows in other virtual

networks

• Overhead reduction in the resource reallocation process

IV. DESIGN

The proposed BAS comprises three phases: BAS-I (initial-

ization), BAS-II (allocation), and BAS-III (reallocation). We

discuss each phase in the following subsections.

A. BAS-I: Initialization

The BAS-I phase is responsible for creating a big link when

requested by the network manager. When the virtual network

manager requests the creation of a big link between arbitrary

physical ports (e.g., Pi and Pj), BAS-I creates new virtual

ports V Pi and V Pj mapped to Pi and Pj . Then, the created

big link BLn is directly connected to V Pi and V Pj . Physical

resources must be allocated between the virtual ports before

any traffic can flow.

B. BAS-II: Allocation

In the BAS-II phase, the actual path between two virtual

ports is allocated to the big link. The big link is created in

the BAS-I phase; however, this does not mean that any flow

Virtual network

Physical network

S2 S3 S4
S1 S5

VS2VS1

P1

VP1

P2

VP2BL1

S6

New traffic toward S5

Initialize (not yet mapped to any physical resources)

The Path P is Allocated to the BL1

Fig. 3. Big link initialization and allocation

passes through the big link immediately. To allocate resources

in consideration of the actual network traffic, resources must

be calculated when the flow is created. Therefore, we allocate

physical resources when a flow rule request message for the

big link arrives.

To consider the network traffic in the resource allocating

process, the network hypervisor should be aware of the link

throughput of the entire physical network. In SDN, network

statistics can be gathered using a southbound interface, such

as OpenFlow [11]. Regarding the link throughput, we use RX

and TX throughput values of each physical port.

Here, we consider the virtual network environment shown

in Fig. 3. A big link BL1 is not yet mapped to any physical

resource. If new traffic flows from S1 to S5, S1 sends a

flow rule request message to the network hypervisor. Then,

the hypervisor looks up the virtual switch that corresponds

to the physical switch that receives the message. Because

S1 is mapped to VS1 and the packet belongs to the virtual

network, the flow rule request message is delivered to the

virtual network’s controller. After receiving the flow rule

request message, the controller sends a flow rule to the network

hypervisor. Naturally, the flow rule dictates that traffic is

sent to V P1. The network hypervisor installs the rule in

the physical network. Then, as packets are forwarded by S1,

switch S2 requests a new flow rule for the network hypervisor.

The network hypervisor can identify packets that belong to the

virtual network because the allocated physical IP of the packet

contains the tenant ID. However, S2 is not mapped to any other

virtual switches in the virtual network. This is considered a

signal to allocate a resource to the unallocated big link in the

virtual network. Then, BAS-II is initiated and the hypervisor

calculates link costs [12] at that point as follows.

link cost =
1

Link capacity − Link bitrate
(1)

Using the link cost, the hypervisor calculates the shortest

path between the given two arbitrary physical ports by Di-

jkstra’s algorithm. As a result, the hypervisor can obtain the

optimal path to be allocated to the requested big link at that

point. Relative to the example shown in Fig. 3, assume that

the optimal resource path P is {S2, S3, S4}. Then, the Path P

is allocated to the big link BL1.

After the allocation of physical resources, flow rules re-

quired to forward traffic must be installed to the allocated

resources. To configure the packet-forwarding policy, we in-

troduce an integrated inside rule (Section IV-C1).

C. BAS-III: Reallocation

In addition to allocating resources in consideration of net-

work traffic, we propose the BAS-III resource reallocation

scheme, which is similar to traffic load balancing. The goal

of BAS-III is to enhance throughput of the big link by real-

locating physical resources. However, the reallocation of the

physical resources means that the path of the packet transfer

changes, because the allocated path to the big link alters. Thus,

such reallocation introduces new overheads. For example,

changes to the packet transmission path cause packet-ordering

issues, which results in significant performance degradation.

Moreover, packets may be lost during the resource reallocation

process. To resolve the issues, we implement the following.

• Soft reallocation for reducing packet ordering issues

• Asynchronous hard reallocation for periodic path recal-

culation and Loss avoidance to eliminate packet loss

• Synchronous hard reallocation for reducing reallocation

overhead

1) Soft reallocation: We introduce soft reallocation to avoid

corruption of the packet transmission sequence. Soft realloca-

tion reallocates physical resources within the big link when

there is no traffic on the link for a certain period. The scheme

assumes that data always flows on the same path at given time

intervals. If a packet that matches the inside rule of the big link

does not occur for a given period, the switch deletes the flow

rule and notifies the event to the hypervisor. Since there is no

flow in the big link, the proposed BAS returns to the BAS-II

phase and reallocates resources when a new flow occurs in the

big link.

However, flow rules are generated for each flow that enters

the big link and installed individually in the existing hypervisor

design. The resource we focus on is a link; thus, flow rules to

be installed to the switches matches on various header fields

but performs same things – forward the packet to the next

switch. To solve this efficiently, we introduce the integrated

inside rule. With this rule, the switch allocated to the big

link only matches a packet with the switch’s input port and

the upper 8 bits of the source IP address, i.e., the tenant ID.

If the packet matches these elements, it is transferred to the

output port of the switch, i.e., the next switch of the allocated

resources at the big link. If the integrated inside rule is already

installed to the allocated physical resource of the big link, no

additional configuration is required for the switch. Besides,

the switch consumes much less memory for the flow table.

2) Asynchronous hard reallocation: Another concern is

that, if traffic flows without interruption, soft reallocation will

never occur. In other words, the reallocation process can suffer

a sort of starvation. Thus, we introduce hard reallocation,

which is a method for performing resource reallocation un-

conditionally after a specified time. Hard reallocation can be

designed in two ways. The first is to have the switch remove

the configuration installed by the network hypervisor after

a certain period. The switch then requests a new resource

allocation from the network hypervisor. This approach is

referred to as asynchronous reallocation.

S3 S4

S5
S6

remove old flow rule
install new flow rule

Packets S2

S1

Fig. 4. Direction of packet transfer policy removal

Network Hypervisor

Statistics
manager

Big link
manager

Physical Network

Flow_mod
routine

Flow_removed
routine

Packet_out
routine

Packet_in
routine

Synchronous
timer

Path
calculator

Stats_request
routine

Stats_reply
routine

OpenFlow manager

Fig. 5. BAS structure

However, packet transmission is not possible while sending

the reallocation request, calculating the path for resources, and

performing the allocation. The resulting packet loss and perfor-

mance degradation are inevitable. To address this situation, we

introduce loss avoidance, which buffers packets in the network

hypervisor. When no packet forwarding policies are set at the

physical switch, the switch sends all unmatched packets to the

network hypervisor. This packet loss problem is easily solved

by buffering and sending such packets to the last physical

switch mapped to the big link.

3) Synchronous hard reallocation: Note that asynchronous

hard reallocation always triggers a reallocation process for

every determined period. In other words, even when the

optimal physical resources have not changed relative to the

resources allocated for the big link, the resources are removed

for each period due to the asynchronous nature of the process.

To address this problem, we propose a synchronous method.

By implementing a timer that fires at a regular interval for

each big link in the network hypervisor, reallocation is only

performed when there is a change relative to previously

allocated resources.

In addition, for the synchronous method, the order of the

installation and deletion of a packet transfer policy affects

performance. Specifically, if flow rule installation and network

configuration for a newly allocated resource are performed

prior to the deletion of previously allocated resources, network

traffic can be transferred to the newly allocated resources with-

out delayed configuration. Moreover, removing the previously

allocated resources requires additional caution. If flow rules

installed to the allocated path are deleted in reverse order of

the packet forwarding direction, switches not yet configured

will still transmit packets according to the old policy, thereby

resulting in packet loss. For example, in Fig. 4, the packet

that conforms to the previously allocated policy is lost in S3

because the policy is deleted in the middle of the resource

reallocation process as the policy is removed in the reverse

packet transmission direction.

V. IMPLEMENTATION

In this section, we explain the BAS implementation and

discuss how each feature achieves the design goals described

in Section III. We implement a prototype based on OVX,

which uses OpenFlow as its southbound interface. The BAS

does not depend on any particular OVX feature; thus, it can be

implemented using any other SDN hypervisor. Fig. 5 shows

the overall structure of the BAS. Its features can be divided

into three main components: 1) big link management, 2) path

calculation to be allocated to the big link, and 3) resource

allocation. We describe each component as follows.

A. Big link management

When a virtual network manager asks the hypervisor to

create a big link, the “Big link manager” is employed to

collectively manage its related content, such as connected

virtual ports. This is related to the BAS-I phase (Section

IV-A). This component also manages information about the

allocated resources in the BAS-II and BAS-III phases. With

this information, further implementations, i.e., forwarding pol-

icy configuration and the reduction of reallocation overhead,

are performed.

B. Path calculation

The “Path calculator” and “Statistics manager” are respon-

sible for calculating the path allocated to big links in the

BAS-II and BAS-III phases. To reflect the network traffic

of the physical network, the “Statistics manager” periodically

gathers the amount of data sent and received over physical

ports using the “Stats_request routine” and the “Stats_reply

routine.” Note that the regular interval of statistics gathering

follows the network hypervisor’s policy as discussed in [13].

With the gathered data, the “Statistics manager” calculates the

average link bitrate of each physical link. When the “Path

calculator” requests the link bitrate at a specific point in time,

the “Statistics Manager” returns the calculated value.

The “Path calculator” is called when the big link has

not been mapped to any physical resource or reallocation is

requested from other components. This component calculates

the path to be allocated for the big link using the shortest path

algorithm with costs that the “Statistics Manager” returns.

C. Resource allocation

As mentioned previously, after the BAS-I phase, physical

resources are not allocated to the big link. When initial traffic

occurs in the big link, the message from the switch goes to the

“Packet_in routine,” which calls the “Big link manager” and

“Path calculator” in order. After the “Path calculator” returns

the resources to be allocated to the big link, the “Big link

manager” calls the “Flow_mod routine” to configure policies

for packet transfer within the big link. The packet forwarding

policy is realized as flow rules. To realize a soft reallocation

design, we implement flow rules with an idle timeout value.

When there is no matched traffic for the flow rule, the flow

rule is removed after a designated idle timeout. The BAS

installs only one rule to internal resources (integrated internal

rule concept discussed in Section IV-C); thus, the allocated

physical resource and its configuration are removed after the

idle timeout value. Then, the switch sends a message to notify

S5S4S3 S10 S11S1 S2H1 H3

S11S1H2 H4
Virtual network 1 (VN1)

Virtual network 2 (VN2)

Fig. 6. Topology for experiments

the event, and the message is processed by the “Flow_removed

routine.”

In addition, we implement synchronous hard reallocation

as the “Synchronous timer” initializes the corresponding big

link’s hard reallocation timer. When the hard reallocation timer

of the big link fires, the timer calls the “Path calculator”

component to calculate the optimal path at that point and resets

timeout value. After the calculation, the routine compares the

pre-allocated resources and performs resource reassignment

only when there are changes to the newly computed resources

and previously allocated resources. If there are changes, new

resources are updated by the “Big link manager.” Here, the

order is important (Section IV-C3). The installation of the

new policy proceeds before deletion of the existing policy. In

addition, the direction of the flow rule is in reverse order of

the packet forwarding direction in the big link; thus, existing

packets in the big link can be transmitted according to the

existing policy.

We additionally implement asynchronous hard reallocation

in an optional mode to experimentally validate performance

enhancement obtained by synchronous hard reallocation. In

this manner, the flow rule is removed even if there is traffic.

Then, the network hypervisor notifies the hard timeout and

reallocates physical resources. During the flow rule reset

process, all packets flowing in the big link are lost. To avoid

this issue, we implement a loss avoidance design in the

“Packet_out routine.”

VI. EVALUATION

In this section, we evaluate the performance of the proposed

BAS and hard timeout overhead, i.e., the so-called reallocation

overhead. We evaluate the BAS in three ways: 1) initial

resource allocation performance, 2) resource reallocation per-

formance for traffic load balancing, and 3) overhead for

resource reallocation per design.

A. Experimental Setup

To evaluate the performance of the proposed BAS, we

prepare three server machines connected by a 10-GbE switch.

The first machine employs Mininet to emulate a physical

network, and the second machine employs multiple ONOS

[14] controllers for virtual network management. In addition,

we run the network hypervisor with BAS implemented on

another machine. To analyze the performance improvement

obtained by the BAS, we use OVX for comparison.

We use the physical network in Fig. 1, and the topology has

11 physical switches and two hosts are connected to each edge

switch. The network hypervisor creates two virtual networks

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80

Bi
g

lin
k

th
ro

ug
hp

ut
 (M

bp
s)

Network bottleneck traffic (Mbps)

OVX BAS

Fig. 7. Comparison of big link throughput to OVX

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90

Bi
g

lin
k

th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

OVX BAS

Fig. 8. Big link throughput evaluation for resource reallocation

as Fig. 6. We create a linear topology comprising seven one-to-

one virtual switches connected by one-to-one virtual links and

two physical hosts for virtual network 1 (VN1), and a linear

topology comprising two one-to-one virtual switches, one big

link, and two physical hosts for virtual network 2 (VN2). VN1

is used to add traffic load to the physical network, and the VN2

is used to evaluate the performance of the BAS relative to big

link throughput. Here, Iperf3 is used to generate traffic and

measure the results. In addition, the soft reallocation period

and hard reallocation time are set to 1 s and 5 s, respectively.

B. Results

1) Initial resource allocation performance: Fig. 7 shows

the resource allocation performance of the BAS. For the traffic

load, prior to creating a big link in VN2, we generate TCP

traffic between two hosts (10 to 80 Mbps) in VN1. The big

link is created while VN1 traffic flows, and new traffic in VN2

(128 MB of TCP data) flows after the creation of the big link.

After this, we measure the throughput of the big link during

the file transfer.

The results show that the BAS successfully allocates phys-

ical resources better than OVX. Specifically, with bottleneck

loads of 60 Mbps or greater, the proposed BAS shows im-

provements of 2.7 to 3.8 times to OVX. Between 10 and

50 Mbps, the total big link throughput is similar to existing

methods. This is due to our calculated link cost. The link cost

used by the routing algorithm is the reverse of the available

bandwidth; thus, rather than the current link’s bitrate, the

results are affected by the number of hops. We plan to research

a metric for this in future.

2) Reallocation performance: For resource reallocation, we

demonstrate throughput enhancement when the traffic load is

increased after creating a big link. For this experiment, we

first create a big link in VN2 and generate 50 Mbps traffic

between two hosts. Then, after 30 s, we generate 100 Mbps

of UDP traffic in VN1. Here, we apply synchronous hard

reallocation and loss avoidance. As shown in Fig. 8, the big

8.8
9.0
9.2
9.4
9.6
9.8

10.0
10.2
10.4

0 20 40 60 80 100 120 140 160 180 200

Bi
g

lin
k

th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Asynchronous hard reallocation

Fig. 9. Overhead measurement for asynchronous hard reallocation

8.8
9.0
9.2
9.4
9.6
9.8

10.0
10.2
10.4

0 20 40 60 80 100 120 140 160 180 200

Bi
g

lin
k

th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Asynchronous hard reallocation + Loss avoidance

Fig. 10. Overhead measurement for asynchronous hard reallocation and loss
avoidance

link throughput with the BAS increases after 35 s, which is 5 s

after the traffic generation of other tenants. When the big link

is initially created, physical switches {S2, S3, S4, S5, S10}

are allocated to the big link. VN2’s switches share the same

physical switches; thus, traffic is concentrated to those physical

resources, even though there are other idle resources (switches

S6, S7, S8, and S9). In this situation, the BAS can allocate a

new resource when there are better physical resources for the

big link, unlike the existing technique. The time to recovering

performance is up to the hard reallocation time. This parameter

determines the interval of the network hypervisor to check the

link throughput of the physical network and recalculates the

optimal path before the actual policy installation occurs. The

resource is reallocated for approximately 35 s since the hard

reallocation time is 5 s in our case, and the throughput of BAS

increases up to the previous performance of 50 Mbps.

3) Reallocation overheads: Here, we evaluate overhead

for physical resource reallocation in our designs. In this

experiment, we only create VN2 and generate 10 Mbps of

UDP traffic between two hosts.

Fig. 9 shows the overhead in asynchronous hard reallocation

scheme without applying any overhead degradation scheme.

As can be seen, throughput degradation is approximately 10%

(at an interval of 5 s). This happens because the policies are

removed from the physical switches every 5 s, new settings

are requested for the network hypervisor, and no packets are

transmitted before the configuration is established. During the

configuration, the packets sent from the hosts are lost.

Fig. 10 shows the results after applying the loss avoid-

ance with asynchronous hard reallocation design. The loss of

throughput is reduced significantly by the way in which the

network hypervisor buffers packets that would be lost in the

reallocation process and sends them to the last physical switch

allocated to the big link.

Finally, we compare the BAS with both synchronous hard

reallocation and loss avoidance to OVX to evaluate the

8.8
9.0
9.2
9.4
9.6
9.8

10.0
10.2
10.4

0 20 40 60 80 100 120 140 160 180 200

Bi
g

lin
k

th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

OVX Synchronous hard reallocation + Loss avoidance

Fig. 11. Overhead measurement for synchronous hard reallocation and loss
avoidance

throughput overhead for the reallocation process. The results

are shown in Fig. 11. The throughput fluctuation is very

small compared to the results shown in Fig. 10, and there

is negligible load compared to the conventional technique

which does not reallocate physical resources. This is because

synchronous hard reallocation avoids unnecessary reallocation

for overlapping resources by determining whether the best

physical resources at that moment have changed.

VII. RELATED WORK

This work is related to SDN-based network virtualization.

Compared to the previous work [6], BAS provides a big link

with a higher throughput. On the other hand, BAS is also

related to the network embedding algorithms in that BAS deals

with creating a big link within a single physical topology. The

main purpose of network embedding algorithms is to calculate

capable physical resources to satisfy constraints, i.e., delay,

bandwidth for the virtual network. Because the problem is

NP-hard, they reduce the problem to sub-optimal. [15], [16],

[17] However, most of them focus on resource calculation

itself. Moreover, the performance evaluation is done with a

simulation. In contrary, we practically designed BAS to cover

not only allocation scheme but also actual implementation

issues, such as overheads in reallocation process. Moreover,

we implemented the actual prototype of BAS with the open

source network hypervisor.

VIII. CONCLUSION

In this paper, we proposed BAS, a resource allocation

scheme for a big link in virtualized SDN to enhance the

throughput of big link. By regarding the network traffic and

soft/hard reallocation method, BAS enhance the throughput

of the big link. We implemented BAS with OpenVirteX and

evaluated the performance on the emulated network. The

evaluation results show that BAS successfully enhances the

initial allocation and deal with traffic loads from other tenants

by reallocation. Moreover, packet loss and the throughput

fluctuation is decreased. Based on our work, we shall extend

the framework to cover other big resources, such as big

switches. Moreover, in order to cover practical use of the

design, research for guaranteeing the specified amount of

network bandwidth and transfer delay will be conducted.

REFERENCES

[1] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over
layer 3 networks,” Tech. Rep., 2014.

[2] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic routing
encapsulation (gre),” Tech. Rep., 2000.

[3] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and
A. Conta, “Mpls label stack encoding,” Tech. Rep., 2000.

[4] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2013.

[5] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, vol. 1, p. 132, 2009.

[6] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “Openvirtex: Make your virtual sdns pro-
grammable,” in Proceedings of the third workshop on Hot topics in
software defined networking. ACM, 2014, pp. 25–30.

[7] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. J. Jackson et al., “Network
virtualization in multi-tenant datacenters.” in NSDI, vol. 14, 2014, pp.
203–216.

[8] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks.” in NSDI, vol. 15, 2015, pp.
87–101.

[9] M. Team, “Mininet: An instant virtual network on your laptop (or other
pc),” 2012.

[10] B.-y. Yu, G. Yang, K. Lee, and C. Yoo, “Aggflow: Scalable and efficient
network address virtualization on software defined networking,” in
Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking.
ACM, 2016, pp. 1–6.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[12] S. Tomovic and I. Radusinovic, “Fast and efficient bandwidth-delay
constrained routing algorithm for sdn networks,” in NetSoft Conference
and Workshops (NetSoft), 2016 IEEE. IEEE, 2016, pp. 303–311.

[13] G. Yang, K. Lee, W. Jeong, and C. Yoo, “Flo-v: Low overhead network
monitoring framework in virtualized software defined networks,” in
Proceedings of the 11th International Conference on Future Internet
Technologies. ACM, 2016, pp. 90–94.

[14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[15] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[16] W.-H. Hsu, Y.-P. Shieh, C.-H. Wang, and S.-C. Yeh, “Virtual network
mapping through path splitting and migration,” in Advanced Information
Networking and Applications Workshops (WAINA), 2012 26th Interna-
tional Conference on. IEEE, 2012, pp. 1095–1100.

[17] M. Capelle, S. Abdellatif, M.-J. Huguet, and P. Berthou, “Online
virtual links resource allocation in software-defined networks,” in IFIP
Networking Conference (IFIP Networking), 2015. IEEE, 2015, pp. 1–9.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

