
Network Monitoring for SDN Virtual Networks
Gyeongsik Yang, Heesang Jin, Minkoo Kang, Gi Jun Moon, Chuck Yoo

Department of Computer Science and Engineering
Korea University

Seoul, Republic of Korea
ksyang@os.korea.ac.kr, hsjin@os.korea.ac.kr, mkkang@os.korea.ac.kr, shangmoon@korea.ac.kr, chuckyoo@os.korea.ac.kr

Abstract—This paper proposes V-Sight, a network monitoring
framework for software-defined networking (SDN)-based virtual
networks. Network virtualization with SDN (SDN-NV) makes
it possible to realize programmable virtual networks; so, the
technology can give many benefits to cloud services for tenants.
However, to the best of our knowledge, network monitoring,
although it is a vital prerequisite for managing and optimizing
virtual networks, has not been investigated in the context of SDN-
NV. Thus, virtual networks suffer from non-isolated statistics
between virtual networks, high monitoring delays, and excessive
control channel consumption for gathering statistics, which crit-
ically hinders the benefits of SDN-NV. To solve these problems,
V-Sight presents three key mechanisms: 1) statistics virtualization
for isolated statistics, 2) transmission disaggregation for reduced
transmission delay, and 3) pCollector aggregation for efficient
control channel consumption. V-Sight is implemented on top
of OpenVirteX, and the evaluation results demonstrate that V-
Sight successfully reduces monitoring delay and control channel
consumption up to 454 times.

Index Terms—Network monitoring, network virtualization,
Software-defined networking

I. INTRODUCTION

Network virtualization (NV) based on software-defined net-
working allows network operators to compose and manage
virtual networks (VN) in their preferences. Network hyper-
visor (NH) [1]–[3] is an enabling technology that supports
VN abstractions such as virtual switches, links, ports [1], and
addresses [3]. NH sits between switches and VN controllers.
With NH, VN users can create their own VN topology and
control it using their VN controllers (e.g., POX [4], ONOS
[5], OpenDayLight [6]).

Until now, NHs have evolved to be more scalable [7]–[9]
and flexible [10]. However, to the best of our knowledge,
none of the NHs provides network traffic monitoring, which is
a vital prerequisite for network management. Thus, network
traffic monitoring in SDN-NV causes three main issues: 1)
inaccurate statistics, 2) high monitoring delay, and 3) exces-
sive control channel traffic consumption. First, because VN
controllers attempt to optimize and manage their VNs based
on statistics, it is essential to have accurate statistics. However,
in SDN-NV, the statistics collected in physical network are the
aggregate of multiple VNs running on the network, and yet
there is no mechanism to retrieve the statistics and isolate them
for each VN.

Second, SDN-NV architecture inevitably increases the delay
(so-called transmission delay) between the statistics request
from the controller and the reply from switches. When the

statistics request message arrives from the controller to the
NH, the NH must send the corresponding network statistics
request messages to the physical network (switches) and
wait to receive the results. Therefore, the transmission delay
increases. As an example, if a VN controller sends a request
for “all flow entries of a virtual switch,” the transmission delay
can be very high since the statistics of individual flow entries
are collected sequentially before being sent back to the VN
controller. Our experiment shows that the transmission delay
increases up to 333 times when compared to non-virtualized
SDN (§II-C2). The increased delay means that the collected
statistics can be out-of-date.

Third, the NH excessively consumes control channel traffic
compared with non-virtualized SDN. In our experiment, con-
trol channel consumption increases up to three times (§II-C3)
when the VN controller asks for the statistics of all the flow
entries per switch. This high consumption is because the NH
has to send multiple messages to switches in order to respond
to a request from the controller. Since such messages go
through the control channel, the control channel consumption
increases, and other traffic gets affected [11]. For instance, our
experiment finds that flow rule installation time increases 4.3
times due to the control channel consumption for retrieving
the statistics.

To sum up, the problems caused by the lack of network
monitoring preclude network optimization and essential net-
work controls. To solve these problems, we design V-Sight, a
comprehensive network monitoring framework for SDN-NV.
V-Sight provides three mechanisms: 1) statistics virtualization
to isolate statistics per VN, 2) transmission disaggregation to
reduce the transmission delay, and 3) pCollector aggregation
to reduce the control channel consumption.

Statistics virtualization calculates virtual network statis-
tics (vStatistics) per VN from physical network statistics
(pStatistics) (§III-B). Transmission disaggregation (§III-C)
uses caching of the frequently used pStatistics. The caching is
done with pCollector that retrieves the pStatistics routinely and
stores the data in NH, which removes the delays for pStatis-
tics transmission. We design pCollector aggregation (§III-D)
to reduce the control channel consumption of pCollector.
Rather than collecting pStatistics from individual pCollectors,
pCollector aggregation attempts to merge pCollectors so that
multiple pStatistics are retrieved with a single request message,
which reduces the number of messages and thus control
channel consumption.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.
This is an accepted version. Final article—DOI: 10.1109/INFOCOM41043.2020.9155260

https://ieeexplore.ieee.org/abstract/document/9155260

VN 1 controller VN 2 controller

NHVN 1 VN 2

PN

S1 S2 S5S3 S6 S1 S6

S1 S2 S3

S4

S5 S6

Fig. 1: SDN-based network virtualization.

V-Sight accomplishes the following contributions:
• We address the problems of network monitoring for SDN-

NV: statistics isolation, improved monitoring delay, and
enhanced control channel consumption for NHs.

• We design and develop V-Sight, the first network moni-
toring framework that leads to accurate statistics and low-
overhead monitoring for virtualized SDN.

• We implement V-Sight in an open-source network hyper-
visor, OpenVirteX (OVX), and evaluate the framework
rigorously.

The remainder of this paper is organized as follows. §II
describes the background, motivation, and particular problems
of network monitoring in SDN-NV. The fundamental concepts
and the complete design of V-Sight are given in §III, and §IV
presents the evaluation results. §V elaborates on the related
work. Finally, §VI concludes this paper.

II. BACKGROUND AND MOTIVATION

Here, we explain the background of this study: SDN-NV
and network monitoring. Then, we identify issues for network
monitoring on SDN-NV.

A. SDN-based Network Virtualization

SDN-NV is composed of three layers, as shown in Fig.
1: the VN controllers, NH, and physical network (PN). A VN
controller can create its VN topology with VN resources, such
as virtual switches, links, and ports. This is done when the VN
controller sends a request to the NH. When the NH receives the
request, it substantiates the VN resources with the mappings
to the PN switches or ports. For instance, a virtual switch
operates based on the mapping of one physical switch, or a
set of physical switches and links. The virtual port (vp) for
each virtual switch is also mapped to the physical port (pp).
In addition, a virtual link can be created by connecting two
vps.

Once the VN topology is created, the VN controller1 runs
to manage the created virtual resources. The VN controller
connects with the virtual switches through south-bound inter-
faces (e.g., OpenFlow) and implements flow entries that match
packets so that it processes (e.g., forward) the matched packets.

1Typically, SDN controllers (e.g., POX, ONOS, OpenDayLight) are used as
VN controllers. So, throughout this paper, we use the term ‘SDN controller,’
and ‘VN controller’ interchangeably. For non-virtualized SDN context, we
use the term ‘SDN controller,’ and ‘VN controller’ is used for SDN-NV.

Physical switch SDN controller

① Collection

Statistics request
Statistics reply

③ Analysis

② Transmission

Fig. 2: Three steps of network monitoring in SDN.

These operations are done by control messages from the VN
controller, and the control messages go through the control
channel.

VN resources and flow entries are mapped to the cor-
responding resources in the PN. This means that the PN
resources can be mapped to either one or more of the VN
resources. Thus, the flow entries from multiple VN controllers
can be mapped to the smaller number of physical flow en-
tries [7], [8]. Throughout this paper, we use the term V to
represent a virtualization function and V ′ to represent a de-
virtualization function that gets the mapped resources to the
physical resource, or vice versa. For example, when a physical
flow entry (pf) is given, V (pf) gives the virtual flow entries
(vfs) mapped to the pf . Also, given a virtual switch S, V (S)
generates the list of physical switches and links mapped to S.

B. Network Monitoring in SDN

Network monitoring in SDN goes through three steps as
Fig. 2 [12]: 1© collection, 2© transmission, and 3© analysis.
The statistics are recorded at the switches, which measure
the processed amount of packets per flow entry or port (1©
collection). Then, an SDN controller gathers the statistics from
a switch (2© transmission). With the collected information, the
SDN controller analyses, manages, and optimizes the networks
(3© analysis).

For example, ONOS [5] collects the statistics of flow entries
and ports at 5 s intervals. Also, ONOS checks the consistency
of the implemented flow entries, which needs to collect a large
number of flow entry statistics. Therefore, it is well-known
that such network monitoring causes enormous overheads to
SDN controllers [13]. The overheads are considered as a
critical problem for SDN controllers; therefore, many studies
have tried to reduce the monitoring overheads. Typically,
their solutions use a trade-off relationship between statistics
accuracy and monitoring overhead, so they lower the accuracy
in order to reduce the monitoring overhead. For example,
transmission sampling [14]–[16], statistics hashing [17], and
statistics prediction [18] compromise the accuracy by omitting
the collection of some statistics values. Therefore, directly
applying these solutions to SDN-NV makes the monitoring
overhead worse. It is because multiple VNs increase the
monitoring overhead which can easily void the validity of
monitoring itself.

pPort1

vPort1 vPort2 vPort3

Physical network

VN 1 VN 2 VN 3

Network hypervisor

VN 1 controller VN 2 controller VN 3 controller

Fig. 3: Non-isolated statistics example.

2 4 8 16 32
0

5

10

500

1000

1500

2000

Number of connections

S
ta

tis
tic

s
tr

a
ns

m
is

si
o

n
d

e
la

y
(m

s) SDN-NVNative

Fig. 4: Statistics transmission delay comparison (ms).

C. Issues of Network Monitoring for SDN-based Network
Virtualization

Here, we discuss three issues caused by the lack of network
monitoring in SDN-NV in detail, which motivates V-Sight.

1) Non-isolated statistics: In SDN-NV, the PN resources
(e.g., switch and port) are shared between multiple VNs. So,
the collected statistics from physical resources are not isolated
between the VNs. Figure 3 shows an example of three VNs,
each having one vp. In this scenario, all vps are mapped to the
same pp (pPort1). Suppose that the VN1 controller retrieves
the statistics of vPort1. As pPort1 does not know about the
presence of multiple VNs, it does not separately collect the
statistics per VN. Thus, the VN1 controller ends up with the
aggregated statistics, not its own. Statistics are used for various
network management operations of VN controllers, such as
cost-based central routing, traffic engineering features, and
quality-of-service. However, with the non-isolated statistics,
VN controllers cannot fulfill their desired goals. Thus, V-Sight
should isolate statistics in the sense that the statistics provided
to each VN controller should only contain information regard-
ing the VN, not the others.

2) High transmission delay: Network monitoring is per-
formed repeatedly to track changing statistics. The reply to
the statistics request should arrive as soon as possible because
the transmission delay between the request and reply messages
distances the value of the statistics from the request time.

We experiment to see how much the transmission delay
increases in SDN-NV. Because existing NHs do not support
network monitoring, we implement a simple monitoring func-
tion on OVX. The implementation receives the statistics re-

6 12 18 24 30
0

5000

10000

15000

20000

25000

Number of connections

S
ta

tis
tic

s
m

e
ss

a
g

e
s

(b
yt

e
s

p
e

r
se

co
n

d
)

Native SDN-NV

Fig. 5: Control channel consumption comparison (bytes per
second).

quests from VN controllers and then gathers the corresponding
statistics from PN based on the mappings between VNs and
PN. The monitoring function replies to VN controllers after all
pStatistics from the physical switches arrive. The experiment is
conducted in a 4-ary fat-tree topology with 2, 4, 8, 16, and 32
TCP connections in a VN. The VN controller issues statistics
requests at a 5 s interval for every switch in its network, asking
for the statistics of all flow entries of each switch.

As described in Fig. 4, non-virtualized SDN (Native) ex-
hibits almost constant statistics transmission delay, at 4.6 ms
on average, regardless of the number of network connections.
In contrast, SDN-NV shows a delay of 187 ms to 1,836
ms, which is 38 to 333 times higher than that of Native.
The reason for the increased delay is that, for a request for
statistics for all flow entries in the switch, the implementation
performs statistics transmission as many as the number of flow
entries in the switch. After the statistics of each flow entry are
collected, the VN controller receives the reply. As a result, the
transmission delay in SDN-NV increases up to 1.84 s (Fig. 4).

3) Excessive control channel consumption: Statistics trans-
mission is realized through the control channel. The control
channel is also utilized by VN controllers for operations like
switch connection handshaking, flow entry installation and
modification, topology discovery process, and ARP process-
ing. So, when the control channel consumption for statistics
increases from 5.11 KB/s to 22 KB/s, we find that flow entry
installation suffers four times higher delay (from 86 ms to 368
ms). Since operations like flow entry installation can affect the
throughput of network connections, the consumption of the
control channel for network monitoring should be reduced.

To be precise, we evaluate the control channel consumption
for the network monitoring of SDN-NV. We set a linear
topology with five switches and three VNs. Each VN has two
hosts at the edge of the topology with 6, 12, 18, 24, and 30
network connections in PN. We conduct experiments with the
same monitoring function on the NH and statistics requests as
§II-C2. Figure 5 shows the control channel consumption for
the flow statistics transmission. The results are 1.5 to 2.3 times
higher than Native. In Native, most SDN controllers collect all
pf statistics with a single request message for a switch. On
the contrary, the NH collects the statistics for each pf one-by-
one. If 30 pfs exist in a switch and only three pfs are used
for the VN, collecting all pfs for three pfs is very inefficient.

Transmission disaggregation

pCollector aggregation

V-Sight

VN
controllers

NH

VN controller 1 VN controller 2 VN controller 3

Virtualization
map

pStatistics cacheRequest interval estimation

pCollector tuner

Statistics virtualization
Flow entry Port

Physical
network

pCollectors

…
pCollector filter

pStatistics

vStatistics

Fig. 6: V-Sight architecture.

III. V-SIGHT DESIGN

In this section, we first introduce the overall architecture
of V-Sight framework and its operations. We then present
three mechanisms of V-Sight: 1) statistics virtualization for
isolated statistics, 2) transmission disaggregation for improved
transmission delay, and 3) pCollector aggregation for reduced
control channel consumption.

A. V-Sight Framework Architecture

Figure 6 illustrates the architecture of V-Sight framework.
The processing sequence of V-Sight is as follows. When a
statistics request (e.g., vf or vp) from a VN controller is sent,
statistics virtualization of V-Sight in Fig. 6 (§III-B) receives
the message and calculates the requested vStatistics based on
pStatistics. For calculation, V-Sight references virtualization
map that maintains mappings between VN and PN resources.

The pStatistics needed for vStatistics calculation is obtained
from pStatistics cache. Transmission disaggregation (§III-C)
maintains the ‘pStatistics cache,’ and the cache is filled by
pCollector. What transmission disaggregation does is to have
a pCollector run before the vStatistics request. A key point
of the transmission disaggregation is to prepare the pStatistics
needed for the vStatistics requested with disaggregating the
time the vStatistics comes in and the time the pStatistics are
ready. In other words, transmission disaggregation allows the
pStatistics in the pStatistics cache before the vStatistics request
arrives. To achieve this, transmission disaggregation performs
‘request interval estimation.’

pCollector aggregation (§III-D) consists of two tasks: ‘pCol-
lector filter’ decides the execution period of each pCollector
and checks whether pCollectors can be merged as one pCol-
lector for a specific physical switch; ‘pCollector tuner’ decides
the starting delay of a pCollector for improved accuracy.

B. Statistics Virtualization

Statistics virtualization aims to provide per-VN vStatistics
from non-isolated pStatistics. We develop calculation algo-
rithms for vfs (flow entry) and vps (port), which are the

most fine-grained resources of network monitoring in SDN
networks [19]. Other resources (e.g., flow table, switch, or
entire network) could be derived from the per-VN statistics.

Algorithm 1: Per-tenant flow entry statistics.
Input: vf : virtual flow entry for which the VN

controller requires statistics
Output: S(vf): statistics of the vf
pf = V ′(vf)
if |V (pf)| == 1 then

S(vf) = S(pf)
else

if |V (pf)| > 1 then
Epf = Find edge pf of vf
S(vf) = S(Epf)

Return S(vf)

1) Per-VN flow entry statistics: vf statistics contain the
packet count, byte count, and duration of the installed entry.
For statistics isolation, V-Sight checks the mapping between
vf and pf from the virtualization map (Fig. 6). The mapping
of vf is used in two ways. First, if pf is not shared with
the other VNs (|V (pf)| = 1), the statistics of pf become the
statistics of vf . Second, pf is shared between VNs (|V (pf)| >
1) [8], [11]. In this case, because the pf aggregates all the
statistics of vfs mapped to the pf , V-Sight should not return
the pf statistics directly to the VN controller. Instead, V-Sight
isolates the pf statistics with the following observation: even
though multiple vfs are mapped to one pf , the vfs for edge
switches (first and last switches on the forwarding path) are
installed individually per VN like the mapping case |V (pf)| =
1. It is because, in the edge switches, the packets are dealt with
separately per VN to ensure isolation in NV [8], [20]. That
is, pf in the edge is allocated per-VN so that the packets at
the edge are delivered to the host (or virtual machine). Thus,
V-Sight returns the pStatistics of the edge switch pf as the
requested vStatistics. Algorithm 1 summarizes how to get the
per-VN flow entry statistics.

2) Per-VN port statistics: vp statistics include the amounts
of received (RX) and transmitted (TX) packets. Similar to the
flow entry, pp can be shared by one or more VNs. If only a
single VN utilizes the physical port, the statistics of pp become
vp statistics. On the other hand, if pp is mapped to multiple
vps, it receives and transmits the traffic of multiple VNs. In
this case, V-Sight uses vf statistics obtained in Alg. 1 since
vfs process the packets going to and from the vp of a switch.
For RX, V-Sight accumulates the vStatistics of vfs that have
vp as its input port. To calculate the TX, V-Sight adds up the
vStatistics of the vfs that send packets out to the vp. This
calculation is summarized in Alg. 2.

C. Transmission Disaggregation

The transmission delay for vStatistics (Fig. 7a) is composed
of the following parts: 1) vStatistics request and reply message
transmission time (dv) between the VN controller and NH,

Algorithm 2: Per-tenant port statistics.
Input: vp: virtual port for which the VN controller

requires statistics
vs: virtual switch to which the vp belongs
vf , vf in, vfout: virtual flow entry,
input port of the vf , output port of the vf

Output: S(vp): statistics of the vp
pp = V ′(vp)
if |V (pp)| == 1 then

S(vp) = S(pp)
else

for vfi belongs to vs do
if vf ini == vp then

S(vp).RX+ = S(vfi);
else if vfouti == vp then

S(vp).TX+ = S(vfi)

Return S(vp)

VN
Controller

NH (Statistics
virtualization) PN

vStatistics request
pStatistics 1 request

pStatistics 1 reply

pStatistics n request
pStatistics n reply

…

vStatistics replyTr
an

sm
is

si
on

 d
el

ay

(a) Without transmission disaggregation

VN
Controller PN

vStatistics request

vStatistics reply

Tr
an

sm
is

si
on

 d
el

ay

NH (Statistics
virtualization)

NH (Transmission
disaggregation)

pStatistics 1 request
pStatistics 1 reply

pStatistics n request
pStatistics n reply

…

Ask cached results
Get cached results …

(b) With transmission disaggregation

Fig. 7: Transmission delay comparison.

2) pStatistics request and reply message transmission time
(dp) between the NH and physical switches, which may occur
multiple times depending on the vStatistics request, and 3)
processing time in the NH for statistics calculation (dNH).
Then, if the number of pStatistics needed for vStatistics is n,
the total transmission delay is formulated as dv +ndp+dNH .

For comparison, the total transmission delay in non-
virtualized SDN is dc since single statistics transmission be-
tween PN and the SDN controller is enough to get statistics. dv
is equivalent to dc because both are for transmitting messages
through the control channel. So, the transmission delay of
SDN-NV has the additional time of ndp+dNH . The time dNH

is to perform statistics virtualization (§III-B), and so the focus
to reduce the transmission delay is on reducing ndp, which is
the time for pStatistics transmissions (Fig. 7b). To reduce ndp,
transmission disaggregation introduces the pStatistics cache

and request interval estimation.
1) pStatistics cache: The pStatistics cache tracks the time

when pStatistics is stored and whether pStatistics has already
been used per VN. If the pStatistics cache contains pStatistics
not used for the requesting VN before (hit), the pStatistics
can be directly returned without retrieving pStatistics from any
physical switches. On the other hand, if pStatistics does not
exist in the pStatistics cache (miss) or they are out-of-date
because they have been previously used for the requesting VN
(old), the cache retrieves pStatistics from physical switches.
Figure 7b shows how transmission disaggregation works.

When the number of pStatistics needed for vStatistics is n,
and k of pStatistics are hit (meaning n − k accesses to the
pStatistics cache are miss or old), physical transmissions of
n − k times are conducted for vStatistics. Then, the entire
transmission delay can be reduced to (1 + n − k)dp + dNH .
Therefore, increasing the number k is important for improving
the transmission delay.

2) Request interval estimation: The pStatistics cache is
filled by pCollectors. pCollector exists per-pf which means
that a pCollector executes to retrieve pStatistics of a pf of a
physical switch. To be clear, we use the term ‘interval’ for the
time between two consecutive requests from a VN controller
for a pf , and ‘period’ for the time difference between two
consecutive executions of a pCollector.

For each pCollector, the period of execution should be
determined. If the period of the pCollector is much shorter
than the request interval, the pCollector will end up executing
multiple times before the hit, which wastes the CPU and
control channel. Conversely, if the pCollector is executed
less often than the vStatistics requests, the transmission delay
cannot be reduced because the pStatistics are old. Therefore,
determining the execution period is very important, and this
is what request interval estimation does.

Request interval estimation calculates the mean (µ) and
variance (σ) per pf that characterize the VN controller’s
request intervals. For pfi, the request of VN j is denoted as
pfi,j and its distribution is (µi,j , σi,j). The pStatistics cache
contains pf identifier (pfi) and VN identifier (j). The kth
interval for pfi,j is denoted as pfki,j .

Figure 8 shows the flowchart of the entire request interval
estimation. This process is executed every time the pf identi-
fier (pfi) and the VN identifier (j) is received. This process is
executed whenever the pf identifier (pfi) and the VN identifier
(j) is received as per each vStatistics request. First, request
interval estimation records the interval between consecutive
requests (1© in Fig. 8). Once enough intervals are accumulated
(2©), request interval estimation calculates (µi,j , σi,j) (3©). The
number of intervals used for the calculation is denoted as
‘interval window (w)2.’ When the (w + 1)th request comes,
the distribution of pfi,j (µi,j , σi,j) is calculated based on
the pf1i,j to pfwi,j . Then, among the distributions of multiple
VNs, V-Sight chooses the interval distribution that has the

2Due to the space limit of this paper, we do not include the experiments
for changing the w value. However, for the default monitoring operation of
ONOS, 30 is enough to obtain a stable and reliable interval distribution.

① Store the interval

VN identifier, pStatistics identifier
from pStatistics cache

 ② Number of
stored intervals >=

interval window

③ Calculate
interval distribution

④ pCollector
created?

⑤ Select one
distribution

⑧ Distribution
changed?

Yes

⑥ Send distribution to
 pCollector aggregation

No

Yes

Yes

⑦ Flush stored
intervals

Fig. 8: Flowchart of request interval estimation.

Statistics request

Header pf 1

Header pf 1 Stats 1
Statistics reply

Statistics request

Statistics reply

Header * (all)

Header pf 1 Stats 1 pf 2 Stats 2 pf 3 Stats 3

pCollector for pf 1
Statistics request

Header pf 2

Header pf 2 Stats 2
Statistics reply

pCollector for pf 2
Statistics request

Header pf 3

Header pf 3 Stats 3
Statistics reply

pCollector for pf 3

pCollector for physical switch

Fig. 9: Control channel consumption for two kinds of pCol-
lectors.

minimum µ value (5©). In other words, (µi, σi) = (µi,l, σi,l)
where l = argminj µi,j . The requests that have higher µ than
the selected pfi will hit because the pCollector for pfi based
on (µi, σi) stores the statistics of pfi for those requests in a
timely way. The selected distribution is passed to pCollector
aggregation (6©, §III-D) as a triple (pfi, µi, σi). Note that
a pCollector is created after the w number of intervals are
accumulated. Before the interval window, pStatistics cache
generates ‘miss’ for the required pStatistics of pfi which
makes V-Sight collect pStatistics from the physical network
for each request.

Obviously, the request interval of each VN controller can
change. The request estimation interval flushes the w number
of the past intervals (pf1i,j to pfwi,j) after sending a new interval
distribution (7©), and accumulates the intervals from 1 to
w again. So for the w number of recorded intervals (2©),
(µi,j , σi,j) is updated (3©). If the pCollector for pfi is already
created (4©), request interval estimation checks how much
the newly updated µi,j is changed from the previous value
(8©). If the changed amount is large (say, 25%), this function
selects a new distribution for pfi (5©) and delivers a new triple
(pfi, µi, σi) to pCollector aggregation (6©).

D. pCollector Aggregation

The objective of pCollector aggregation is to execute and
merge pCollectors. Given a triple (pfi, µi, σi) from trans-
mission disaggregation, a pCollector for pfi is created. The
pCollector periodically retrieves the pfi statistics from a
switch. However, if the number of pCollectors increases, the
pCollectors can consume too much of the control channel (as
discussed in §II-C3).

There are two types of pCollectors as Fig. 9. At the top
of Fig. 9, three pCollectors retrieves statistics from their own
pf . The bottom shows one pCollector that collects multiple
statistics at once. For the former, the request message should

Statistics virtualization

Transmission disaggregation

⑦ Execute the pCollector routinely

① Find pCollector period range

② Count tiny pCollectors per
period value in the range

③ Select one pCollector period ④ Calculate rateio for the period

⑤ Higher than
threshold?

YesNo

⑥-3. Set starting delay
for aggregated pCollector

⑥-2. Check existing
vStatistics requests

⑥-1. Set starting
delay for tiny

pCollector

pCollector filter

pCollector tuner

pStatistics request

Request interval distribution

vStatistics request

Fig. 10: Flowchart of pCollector aggregation. This routine is
executed according to statistics virtualization and transmission
disaggregation.

contain the match fields and actions of pf . In contrast, for
the latter, the request message contains “all” as its request.
Obviously, the latter pCollector consumes less control channel
than the former.

We call the pCollector for a single pf (former) as ‘tiny
pCollector’ and the other pCollector as ‘aggregated pCollec-
tor.’ An aggregated pCollector is created when many tiny
pCollectors follow a similar period for pfs in a switch.
pCollector aggregation is done by two tasks: 1) pCollector
filter to determine the execution period of tiny and aggregated
pCollectors and 2) pCollector tuner for improving the accuracy
of vStatistics using pCollector’s results. Figure 10 explains the
operation of the two tasks to be discussed in the following
subsections.

1) pCollector filter: From (pfi, µi, σi), pCollector filter
decides a period of the pCollector for pfi. For the tiny pCol-
lector, it is simple. However, for the aggregated pCollector,
even if VN controllers issue statistics requests with a similar
interval, each µi of pfi can be slightly different (e.g., 4.7
s, 4.9 s, and 5.1 s) since the distribution is estimated based
on w samples. So, it is challenging to decide the period of
aggregated pCollector.

To solve this problem, pCollector filter starts with tiny
pCollectors to have a similar period. From the cumulative
probability distribution function derived by µi and σi, pCol-
lector filter finds a period range that satisfies a certain hit rate,
such as 90% to 95% (1© in Fig. 10). The requests that have
longer intervals than the pCollector’s period will hit, so this
task can stochastically derive the period range using µi and

vStatistics request from VNs time difference between vStatistics request and pStatistics replypStatistics reply by tiny pCollector pStatistics reply by aggregated pCollector

time

pCollector period

(a) Low vStatistics accuracy
(tiny pCollector).

timeCurrent time

starting delay

(b) Enhanced vStatistics accu-
racy with starting delay for tiny
pCollectors.

VN1 VN1VN2 VN2

pCollector period

(c) Low vStatistics accuracy
(aggregated pCollector).

VN1 VN1VN2 VN2

Current time

starting
delay

(d) Enhanced vStatistics accu-
racy with starting delay for ag-
gregated pCollectors.

Fig. 11: Starting delay for tiny and aggregated pCollectors.

σi. Then, for every possible period value within the range,
pCollector filter counts the number of tiny pCollectors that
have the period for the value (2©), and the period value with
the largest number of tiny pCollectors is selected (3©). Once a
period is selected, pCollector filter calculates the ratio of the
number of tiny pCollectors that follow a similar period to the
number of existing pfs in the switch (4©). If the ratio is low, an
aggregated pCollector consumes more control traffic than the
tiny pCollectors. So, only when the ratio is high, for instance,
70%3, (5©), pCollector tuner merges existing tiny pCollectors
into an aggregated pCollector.

2) pCollector tuner: The role of pCollector tuner is to give
additional delay to the first execution of each pCollector in
order to improve the accuracy of vStatistics. In Fig. 11a, a
time difference exists between the time the vStatistics requests
arrive and the time pStatistics are gathered through pCollector.
This time difference depends on the time when the pCollector
first runs. If the pCollector is executed slightly before the
vStatistics request, the time difference will become small as
in Fig. 11b, which means that the cached pStatistics are up-
to-date. As the time difference becomes bigger, it hurts the
accuracy of vStatistics. Therefore, V-Sight introduces ‘starting
delay’ to add the delay to the first execution of the pCollectors.

For tiny pCollectors, the starting delay should be set in
order to execute the tiny pCollector right before the vStatistics
requests (coming after interval window). Also, the starting
delay should not be too large to avoid the pCollector to be
executed after the vStatistics request as Fig. 11a. Empirically,
we set the starting delay at 95% of the pCollector period (6©-1
in Fig. 10).

On the other hand, for aggregated pCollectors, the way of
setting the starting delay for tiny pCollectors rather leads to
poor accuracy. It is because the multiple requests that are
handled by an aggregated pCollector exist at different times
in terms of the pCollector period. Figure 11c illustrates an
example with two vStatistics requests from different VNs
(VN2 followed by VN1). If the starting delay is set to 95% of
the aggregated pCollector, the execution time of the aggregated
pCollector can be after VN2 and before VN1. As Fig. 11c
shows, VN2 suffers a long delay because the aggregated
pCollector executes right after VN2’s request.

3In our evaluation, we run many different ratio values and find that the
improvement comes from 70%.

(a) linear topology (five switches)

(b) fat-tree topology (4-ary)

Fig. 12: Experiment topologies.

Therefore, pCollector tuner sets the starting delay for
the aggregated pCollector as follows. First, pCollector tuner
checks request interval estimation (§III-C2) which stores the
vStatistics request times for each VN (6©-2 in Fig. 10). Then,
the starting delay is set to be right before the first vStatistics
request among the VN requests that the aggregated pCollector
merged, which is the VN2’s request in Fig. 11d (6©-3). In this
way, the sum of time differences from the time the aggregated
pCollector executes to the time each vStatistics request arrives
is minimized. Finally, pCollector tuner executes the pCollector
periodically with the starting delay (7©).

IV. EVALUATION

In this section, we show the evaluation results of V-Sight.
V-Sight is implemented on OVX v0.1 as independent modules
(1.8K LoCs). We measure transmission delay, control channel
consumption, and accuracy overheads that are explained in
details below. Each experiment is repeated to gain more than
40 measured results.

A. Test Setup

We use three physical servers with Intel Xeon E5-2600 and
64G memory. Each server runs Mininet [21], OVX with V-
Sight implementation, and ONOS as VN controllers, respec-
tively. Mininet emulates PN based on Open vSwitch, and we
emulate two kinds of topologies (Fig. 12): 1) linear topology
consisting of five switches and 2) 4-ary fat-tree topology
to evaluate the effects for datacenters. We create three and
one VNs for fat-tree and linear topologies, respectively. Each
VN is managed by an ONOS controller. ONOS monitors
all the flow entries and ports of each switch at 5 s interval
(default settings). We generate TCP connections through the
iperf3 [22], and stress V-Sight by varying the number of TCP

6 12 18 24 30
0

5

10

15

500

1000

1500

2000

2500

Number of connections

S
ta

tis
tic

s
tr

an
sm

is
si

on
de

la
y

(m
s)

NV V-Sight Native

(a) linear (flow entry).

6 12 18 24 30
0

5

10

15

500

1000

1500

2000

2500

Number of connections

S
ta

tis
tic

s
tr

an
sm

is
si

on
de

la
y

(m
s)

NV V-Sight Native

(b) linear (port).

2 4 8 16 32
0
5

10
15
20

500

1000

1500

2000

Number of connections

S
ta

tis
tic

s
tr

an
sm

is
si

on
de

la
y

(m
s)

NV V-Sight Native

(c) fat-tree (flow entry).

2 4 8 16 32
0
5

10
15
20

500

1000

1500

2000

Number of connections

S
ta

tis
tic

s
tr

an
sm

is
si

on
de

la
y

(m
s)

NV V-Sight Native

(d) fat-tree (port).

Fig. 13: Average statistics transmission delay (ms).

connections in PN (e.g., 6 to 30 for linear and 2 to 32 for
fat-tree topologies).

We evaluate V-Sight performance for the following metrics.

• Transmission delay: Average interval between vStatistics
request and reply messages from/to VN controllers.

• Control channel consumption: Average bytes per sec-
ond of control channel traffic to get pf statistics between
the NH and the physical switches.

• Accuracy overheads: Time difference between vStatis-
tics request time and pStatistics collection time of pCol-
lectors – Average value with 95% confidence interval.

The above metrics are measured in the following cases:

• NV: the basis of experiments with OVX similar to the
implementation in §II-C2.

• V-Sight: OVX with the full implementation of V-Sight.
• Native: Non-virtualized SDN in which physical switches

are directly connected to ONOS without NH.

B. Transmission Delay

1) V-Sight improvement: Figure 13 shows that, in NV,
transmission delay increases significantly in proportion to
the number of TCP connections (even over 2 s). However,
V-Sight disaggregates pStatistics transmission routines from
vStatistics virtualization, thereby reducing this delay. In linear
topology, V-Sight consumes 9.35 ms and 4.68 ms, on average,
for flow entry and port statistics transmission, respectively
(Fig. 13a and Fig. 13b). The delays in V-Sight improve 46
times (flow entry statistics, six connections) to 454 times
(port statistics, 30 connections) compared to those in NV.
For fat-tree topology, V-Sight takes 9.75 ms and 7.29 ms of
transmission delay for flow entry and port, respectively (Fig.
13c and Fig 13d). V-Sight’s delay improves 14 times (port
statistics, two connections) to 269 times (port statistics, 32
connections).

In detail, the transmission delay in NV increases in pro-
portion to the number of TCP connections, since the number
of pStatistics needed for vStatistics increases as the con-
nection numbers increases. Then, vStatistics are returned to
the VN controller only after the corresponding pStatistics
are collected. In contrast, V-Sight disaggregates pStatistics
transmission routines from vStatistics virtualization, thereby
reducing this delay.

6 12 18 24 30
0

5000

10000

15000

20000

25000

Number of connections

S
ta

tis
tic

s
m

e
ss

a
g

e
s

(b
yt

e
s

p
e

r
se

co
n

d
)

Native

NV

V-Sight

(a) linear.

2 4 8 16 32
0

5000

10000

15000

20000

25000

Number of connections

S
ta

tis
tic

s
m

e
ss

a
g

e
s

(b
yt

e
s

p
e

r
se

co
n

d
)

Native

NV

V-Sight

(b) fat-tree.

Fig. 14: Control channel traffic usage (bytes/second).

2) Virtualization overheads: We compare the transmission
delay between V-Sight and Native to see the virtualization
overheads. In linear topology, Native takes 2.8 ms and 1.5 ms
for flow entry and port statistics transmission delay, respec-
tively (Fig. 13a and Fig. 13b). The delays in V-Sight are 3.4
times higher, on average, than those of Native. Also, for the
fat-tree topology, Native shows 4.6 ms and 2.37 ms delays for
flow entry and port statistics transmission (Fig. 13c and Fig
13d), respectively. The results of V-Sight are 1.09 times (flow
statistics, two connections) to 6.69 times (port statistics, two
connections) higher than Native.

Although the delays of V-Sight are higher than those of Na-
tive, note that all the values are lower than 20 ms. The default
monitoring intervals of ONOS, Floodlight, and OpenDayLight
are 5 s, 10 s, and 15 s, respectively, so we believe that the
transmission delay of V-Sight, which is 19.36 ms at maximum,
is acceptable.

C. Control Channel Consumption

1) V-Sight improvement: Figure 14 shows control channel
consumption for both topologies. The consumption increases
in proportion to the number of connections because the
monitoring of pfs increases with the number of connections.
In linear topology (Fig. 14a), V-Sight improves the control
channel consumption about 1.9 times, on average. In fat-tree
topology (Fig. 14b), the average consumption of V-Sight is
1.44 times less than NV. This improvement is due to the
benefit of aggregated pCollector that merges the multiple
packet headers (§III-D).

2) Virtualization overheads: Comparing V-Sight with Na-
tive, V-Sight consumes 107% and 93% of control channel
traffic in linear and fat-tree topologies, respectively, which
means that the consumption of V-Sight is quite comparable

6 12 18 24 30
0

1000

2000

3000

4000

5000

Number of connections

Ti
m

e
di

ffe
re

nc
e

(m
s)

(a) linear (flow entry).

6 12 18 24 30
0

1000

2000

3000

4000

5000

Number of connections

Ti
m

e
di

ffe
re

nc
e

(m
s)

(b) linear (port).

2 4 8 16 32
0

1000

2000

3000

4000

5000

Number of connections

Ti
m

e
di

ffe
re

nc
e

(m
s)

(c) fat-tree (flow entry).

2 4 8 16 32
0

1000

2000

3000

4000

5000

Number of connections

Ti
m

e
di

ffe
re

nc
e

(m
s)

(d) fat-tree (port).

Fig. 15: Time difference between the vStatistics and pStatistics (ms).

to that of Native. Furthermore, in fat-tree topology with few
network connections, V-Sight is even better than Native. The
reason is that V-Sight only monitors switches that have the
pStatistics needed for vStatistics. Fat-tree topology has 20
switches (Fig. 12b), and multiple paths between every host pair
are available. In this topology, when the number of connections
is small, not all switches are used for packet forwarding and
so not for vStatistics.

In Native, however, the VN controller monitors all the
switches in PN. So, request and reply messages are gen-
erated for all switches regularly. In V-Sight, transmission
disaggregation controls the creation of pCollectors toward pfs
required. Thus, pCollectors are created only for the required
pfs and, thus, statistics request/reply messages are not created
for switches not used.

D. Accuracy Overheads

V-Sight successfully improves transmission delay and con-
trol channel consumption. The improvements come with the
accuracy overhead inevitably because disaggregated transmis-
sion and pCollector aggregation incur time difference between
when vStatistics requests come and when pStatistics become
available by pCollectors. Figure 15 shows the time differences
for the number of network connections in linear and fat-tree
topologies, plotted with average and 95% confidence interval.
The results indicate that the average time differences in all
cases of network connections are equal to or less than 2,500
ms in both topologies.

This means that V-Sight replies to the VN controller within
2.5 s which is the half of the request interval of VN controllers.
So, the VN controller, at least, does not receive statistics
from the previous statistics request, and therefore the accuracy
overhead does not jeopardize the accuracy of vStatistics itself.

V. RELATED WORK

A. Monitoring in non-virtualized SDN

Various studies for reducing monitoring overheads in SDN
have been proposed. We mention the notable ones due to space
limitation. FlowSense and PayLess [23], [24] introduced a
technique for reducing the number of statistics transmissions
using the control for flow removal of OpenFlow. MicroTE
[25] implemented monitoring and traffic engineering functions

on a separate machine from SDN controllers, so the bottle-
neck is removed from the controller itself. OpenSketch [17]
introduced a hash-based switch measurement architecture to
reduce the number of monitoring trials with a multistage hash-
based switch measurement architecture. Zhang [26] introduced
a prediction-based technique that balances the monitoring
aggregation and accuracy.

The summarized studies all investigated non-virtualized
SDN. Also, the ways of reducing overheads and retaining
statistics accuracy are not quite suitable with SDN-NV.

B. Monitoring in SDN-NV

FlowVisor [1] introduced the first idea of NV in SDN,
and FlowN [2] provided more scalable NH structure based
on containers. OVX [3] defined the address virtualization
schemes, and CoVisor [27] designed a policy composition
framework for a network to be managed by heterogeneous
SDN controllers. OnVisor [9] developed OVX functionalities
on ONOS, enabling the deployment of NH into a physically
distributed architecture.

Although monitoring is a well-investigated topic in SDN,
to the best of our knowledge, there has not been any moni-
toring paper for SDN-NV. Without monitoring, operation and
optimization for VN management are severely hampered.

VI. CONCLUSION

We present V-Sight, the first comprehensive network mon-
itoring framework in SDN-NV. V-Sight makes it possible to
isolate statistics between VNs, reduce statistics transmission
delays, and scale the control channel consumption. To this end,
V-Sight introduces statistics virtualization, transmission dis-
aggregation, and pCollector aggregation. We fully implement
V-Sight and evaluate its key performance characteristics in
terms of transmission delay and control channel consumption.
Furthermore, we evaluate the accuracy overhead to validate
that V-Sight does not compromise the accuracy of network
monitoring. The results show that V-Sight attains a level
comparable to network monitoring in non-virtualized SDN.

As future research, we plan to extend V-Sight to cover
P4’s in-band telemetry. Also, based on the isolated and timely
statistics from V-Sight, we will research the reliability and
performance of traffic engineering.

REFERENCES

[1] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. M. Parulkar, “Can the production network be the testbed?”
in OSDI, vol. 10, 2010, pp. 1–6.

[2] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2012.

[3] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” in Proceedings of the third workshop on Hot topics
in software defined networking. ACM, 2014, pp. 25–30.

[4] “POX Controller.” [Online]. Available: https://noxrepo.github.io/
pox-doc/html/

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[6] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. IEEE, 2014, pp. 1–6.

[7] G. Yang, B.-y. Yu, W. Jeong, and C. Yoo, “FlowVirt: Flow rule virtual-
ization for dynamic scalability of programmable network virtualization,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 350–358.

[8] G. Yang, B.-Y. Yu, S.-M. Kim, and C. Yoo, “LiteVisor: A network
hypervisor to support flow aggregation and seamless network reconfigu-
ration for vm migration in virtualized software-defined networks,” IEEE
Access, vol. 6, pp. 65 945–65 959, 2018.

[9] Y. Han, T. Vachuska, A. Al-Shabibi, J. Li, H. Huang, W. Snow, and
J. W.-K. Hong, “ONVisor: Towards a scalable and flexible SDN-
based network virtualization platform on onos,” International Journal
of Network Management, vol. 28, no. 2, p. e2012, 2018.

[10] B.-y. Yu, G. Yang, H. Jin, and C. Yoo, “WhiteVisor: Support of white-
box switch in SDN-based network hypervisor,” in 2019 International
Conference on Information Networking (ICOIN). IEEE, 2019, pp. 242–
247.

[11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[12] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3958–3969, 2018.

[13] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE
Instrumentation & Measurement Magazine, vol. 18, no. 2, pp. 42–50,
2015.

[14] S. Shirali-Shahreza and Y. Ganjali, “Empowering software defined
network controller with packet-level information,” in 2013 IEEE In-
ternational Conference on Communications Workshops (ICC). IEEE,
2013, pp. 1335–1339.

[15] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” in 2014 IEEE 34th International Conference on Distributed
Computing Systems. IEEE, 2014, pp. 228–237.

[16] M. Li, C. Chen, C. Hua, and X. Guan, “CFlow: A learning-based
compressive flow statistics collection scheme for sdns,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–6.

[17] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), 2013, pp.
29–42.

[18] C. Liu, A. Malboubi, and C.-N. Chuah, “Openmeasure: Adaptive flow
measurement & inference with online learning in sdn,” in 2016 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2016, pp. 47–52.

[19] OPEN NETWORKING FOUNDATION, “OpenFlow
Switch Specification,” 2012. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[20] B.-y. Yu, G. Yang, K. Lee, and C. Yoo, “AggFlow: Scalable and efficient
network address virtualization on software defined networking,” in
Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking.
ACM, 2016, pp. 1–6.

[21] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[22] V. GUEANT, “iPerf.” [Online]. Available: https://iperf.fr/
[23] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-

hyastha, “Flowsense: Monitoring network utilization with zero measure-
ment cost,” in International Conference on Passive and Active Network
Measurement. Springer, 2013, pp. 31–41.

[24] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost network monitoring framework for software defined net-
works,” in 2014 IEEE Network Operations and Management Symposium
(NOMS). IEEE, 2014, pp. 1–9.

[25] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies.
ACM, 2011, p. 8.

[26] Y. Zhang, “An adaptive flow counting method for anomaly detection
in SDN,” in Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies. ACM, 2013, pp. 25–30.

[27] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A compositional
hypervisor for software-defined networks,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015, pp.
87–101.

https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://iperf.fr/

	Introduction
	Background and Motivation
	SDN-based Network Virtualization
	Network Monitoring in SDN
	Issues of Network Monitoring for SDN-based Network Virtualization
	Non-isolated statistics
	High transmission delay
	Excessive control channel consumption

	V-Sight Design
	V-Sight Framework Architecture
	Statistics Virtualization
	Per-VN flow entry statistics
	Per-VN port statistics

	Transmission Disaggregation
	pStatistics cache
	Request interval estimation

	pCollector Aggregation
	pCollector filter
	pCollector tuner

	Evaluation
	Test Setup
	Transmission Delay
	V-Sight improvement
	Virtualization overheads

	Control Channel Consumption
	V-Sight improvement
	Virtualization overheads

	Accuracy Overheads

	Related Work
	Monitoring in non-virtualized SDN
	Monitoring in SDN-NV

	Conclusion
	References

