
Bandwidth Isolation Guarantee for
SDN Virtual Networks

Gyeongsik Yang∗, Yeonho Yoo∗, Minkoo Kang∗, Heesang Jin†, and Chuck Yoo∗
∗Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea

†Blockchain Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
ksyang@os.korea.ac.kr, yhyoo@os.korea.ac.kr, mkkang@os.korea.ac.kr, jinhs@etri.re.kr, chuckyoo@os.korea.ac.kr

Abstract—We introduce TeaVisor, which provides bandwidth
isolation guarantee for software-defined networking (SDN)-based
network virtualization (NV). SDN-NV provides topology and
address virtualization while allowing flexible resource provision-
ing, control, and monitoring of virtual networks. However, to
the best of our knowledge, the bandwidth isolation guarantee,
which is essential for providing stable and reliable throughput
on network services, is missing in SDN-NV. Without bandwidth
isolation guarantee, tenants suffer degraded service quality and
significant revenue loss. In fact, we find that the existing studies
on bandwidth isolation guarantees are insufficient for SDN-NV.
With SDN-NV, routing is performed by tenants, and existing
studies have not addressed the overloaded link problem. To
solve this problem, TeaVisor designs three components: path
virtualization, bandwidth reservation, and path establishment,
which utilize multipath routing. With these, TeaVisor achieves
the bandwidth isolation guarantee while preserving the routing
of the tenants. In addition, TeaVisor guarantees the minimum
and maximum amounts of bandwidth simultaneously. We fully
implement TeaVisor, and the comprehensive evaluation results
show that near-zero error rates on achieving the bandwidth
isolation guarantee. We also present an overhead analysis of
control traffic and memory consumption.

Index Terms—SDN, Software-defined Networking, Network
Virtualization, Bandwidth, Isolation, Performance

I. INTRODUCTION

Software-defined networking (SDN) has made network sys-
tems open and softwarized and has evolved in many directions,
such as network function virtualization [1] and transport SDN
[2]. Among them, combinations of network virtualization
(NV) and SDN [3]–[10] (SDN-NV) have been promoted. The
need for SDN-NV arises from datacenters, in which tenant
networks must be isolated via virtual networks (VNs). Each
tenant has its own SDN controller1 that receives and sends
control messages, such as new packet generation or flow rule
installation. An advantage of SDN-NV is that the tenant can
create its own VN topology on top of the physical network, and
the SDN controller can calculate its own packet-forwarding

This work was done while Heesang Jin was at Korea University. This work
was partly supported by Institute of Information & Communications Tech-
nology Planning & Evaluation grant funded by the Korea government (No.
2015-0-00280, (SW Starlab) Next generation cloud infra-software toward the
guarantee of performance and security SLA). This work was also supported
by National Research Foundation of Korea funded by the Ministry of Science,
ICT (No. NRF-2019H1D8A2105513). Corresponding author: Chuck Yoo.

1The term “SDN controller” in this paper refers to one operated by a tenant.

paths between entities2. With such benefits, a tenant can build
a custom VN topology of network switches and monitor their
performance bottlenecks [11]. Additionally, within its VN, the
tenant can process network connections with priorities for the
purpose of quality-of-experience enhancements [8].

Datacenter applications exist on a broad scale, from com-
modity applications (e.g., video streaming and distributed file
systems) to machine learning services (e.g., training and infer-
ence of neural networks) [12]–[14]. Many of these applications
require network performance isolation. That is, tenants on a
shared network should be able to use the expected network
bandwidth3 [15]. Performance isolation is typically expressed
in terms of bandwidth requirements. When these requirements
are not satisfied, service quality can be severely degraded [16],
and a significant loss in revenue occurs [17], [18]. Therefore,
the lack of the bandwidth isolation guarantee is a critical
problem, yet SDN-NV poses significant challenges to support
bandwidth isolation guarantee.

SDN-NV allows SDN controllers of tenants to calculate
paths for entity pairs, making the problem difficult for existing
studies on bandwidth isolation guarantee to be applied. Most
existing studies [17]–[20] do not consider routing, which
determines the path between an entity pair. Instead, they use
the hose model, in which virtual machines are connected via a
non-blocking virtual switch. This approach assumes that a path
is given (solved by an orthogonal method) and focuses on the
entity pair bandwidth. In SDN-NV, when multiple controllers
calculate various paths, each path has a bandwidth requirement
so that some links can become overloaded beyond the link
capacity. However, existing studies do not address such issues.

For example, Fig. 1a shows the bandwidth isolation guaran-
tee in existing studies based on the hose model. First, suppose
that three tenants (tenants 1, 2, and 3) have one entity pair
each and express their bandwidth requirements—500 Mbps
of traffic for each entity pair through the hose model (Fig.
1a, left), where all physical links can transmit 1 Gbps traffic.
Then, according to the bandwidth requirements, suppose that
the paths of tenants 1, 2, and 3 resulting from the orthogonal

2Without any explicit designation, we use the term “entity” to indicate the
user’s computing entities, such as virtual machines and containers. So, entity
pair means the pair consisting of the source and destination entities.

3We use the term “bandwidth” to indicate the maximum amount of data
that can flow through a path or link. “Throughput” is used to indicate the
actual amount of bandwidth consumed. Except in particular circumstances,
the two terms are interchangeable.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works. This is an accepted version.

… …

500 Mbps

500 Mbps

A

B C

D
E F

G

A B
500 Mbps

Tenant 1

C D
500 Mbps

Tenant 2

E F
500 Mbps

Tenant 3

500 Mbps

(a) Existing studies
with hose model.

… …A

B C

D
E F

G

Overloaded

(b) SDN-NV with
hose model based
studies.

… …A

B C

DE F

G

500 Mbps250 Mbps
250 Mbps

250 Mbps

250 Mbps

(c) Solution of
TeaVisor.

Fig. 1: Bandwidth isolation guarantee examples.

routing methods are A-B-C-D, A-B-C-D, and A-G-D, respec-
tively. Then, existing studies make each entity pair consume
bandwidth per their bandwidth requirements. Thus, for tenants
1 and 2, which share one path, each is limited to using
that path at 500 Mbps, whereas tenant 3 uses another 500
Mbps, resulting in the satisfaction of all tenants’ bandwidth
requirements.

However, in SDN-NV, bandwidth isolation can be broken
due to the routing of tenants. In Fig. 1b, suppose that the three
tenants have the same bandwidth requirements and physical
link capacities as Fig. 1a. Because the controllers do not know
each other in the SDN-NV scheme, SDN controllers of tenants
1, 2, and 3 can possibly calculate the same forwarding paths
consisting of switches A-B-C-D in Fig. 1b. In this situation,
the physical links in the path become overloaded because
the total bandwidth requirements (1.5 Gbps) exceed the link
capacity of 1 Gbps. Therefore, the requested bandwidth re-
quirements are not fully satisfied, even if the physical network
has other paths (i.e., A-E-F-D and A-G-D), which remain idle.

Some existing studies are not based on the hose model,
but they provide fair sharing between source and destination
entities [17], [21]–[23]. For example, Seawall [21] pairs each
source-end entity with a weight so that the share of bandwidth
for the end entity is proportional to the paired weight of all
network links. Here, weight is given by the administrator, so
the purpose of weight is to enable the fair sharing of network
traffic and to control misbehaving traffic. In addition, the
bandwidth given to an end entity can be arbitrarily reduced
[18] by the weights of other network traffic, so the bandwidth
isolation guarantee cannot be achieved in SDN-NV.

On the other hand, bandwidth allocation methods on non-
virtualized SDN, such as Predictor [24] and DBS [25], are
not directly related to the bandwidth isolation guarantee when
using SDN-NV. Predictor is used to minimize the flow table
size and provide the predictable performance of switches and
thereby flows. DBS focuses on scheduling within switches
to dynamically allocate data rates to the flows. The problem
that these methods proposed to solve is rate limiting within
switches. Therefore, their algorithms do not address bandwidth
isolation for SDN-NV.

Thus, we propose TeaVisor to provide the bandwidth iso-
lation guarantee for SDN-NV. The key idea of TeaVisor is to
associate flow rules from the SDN controller with bandwidth
requirements and enable multipath routing to achieve the
bandwidth requirements. For example, as a solution to the
problem shown in Fig. 1b, TeaVisor establishes additional
paths for the bandwidth isolation guarantee (Fig. 1c) as
follows. For the same path, A-B-C-D, shared by all tenants,

tenant 1 is allocated its required 500 Mbps by occupying half
of the link capacity, whereas tenants 2 and 3 achieve half
of the bandwidth requirement, 250 Mbps. For the remaining
bandwidth requirements (i.e., 250 Mbps for tenants 2 and 3),
TeaVisor introduces path virtualization to establish additional
paths needed to satisfy their requirements (e.g., path A-E-F-D
for the 250 Mbps of tenant 2 and A-G-D for the 250 Mbps of
tenant 3). In fact, various studies for multipath routing exist
[26]–[29], but they are not applicable to SDN-NV. We discuss
their limitations and the novelty of TeaVisor in §II-C. To the
best of our knowledge, TeaVisor is the first SDN-NV study that
considers multipath routing for bandwidth isolation guarantee.

To make it practically applicable, TeaVisor is designed
to accept two types of bandwidth requirements: minimum
and maximum, as these reflect the typical requirements of
datacenters [15] for achieving both bandwidth isolation and
enhanced resource unitization. The minimum bandwidth re-
quirement is the amount of bandwidth to be reserved for a
path at all times. The maximum bandwidth requirement is
the upper limit by which TeaVisor can exceed the minimum
bandwidth requirement using the idle bandwidth for work
conserving. In a typical datacenter, tenants follow the pay-
as-use policy, so it is important to adhere to the upper limit to
which the bandwidth can be allocated. However, according to
[30], most datacenters cannot guarantee an upper limit. As a
result, tenants are overcharged. TeaVisor ensures that both the
minimum and maximum bandwidth requirements are satisfied.

The bandwidth isolation guarantee of TeaVisor is achieved
by three components: path virtualization, bandwidth reserva-
tion, and path establishment. First, path virtualization (§III-B)
is for crafting the intended virtual path from flow rules and
for creating the physical paths that realize the virtual path in
the physical network. Then, the bandwidth reservation (§III-C)
reserves the bandwidth requirement on physical paths4 at the
link level. Third, path establishment (§III-D) substantiates the
physical paths using flow rules, such as flow rules for packet
splitting on multiple paths and for rate limiting.

TeaVisor is implemented as a complete system based on
Libera [8], an open-source network hypervisor (NH). We
conduct comprehensive evaluations, including the satisfaction
of bandwidth requirements, policies, and overhead, by varying
the amount of bandwidth requirements and the number of
tenants. In short, TeaVisor makes the following contributions:
• Being the first bandwidth isolation guarantee for SDN-NV.
• Introducing path virtualization and bandwidth reservation

for multipath routing in SDN-NV.
• Achieving near-zero error rates for the bandwidth isolation

guarantee and analyzing the overhead of the bandwidth
isolation guarantee.

II. BACKGROUND AND RELATED WORK

A. SDN-NV

SDN-NV virtualizes tenant networks via NH [3], [5], [8],
[31], which abstracts the underlining (physical) network as

4A path consists of links between switches.

Network hypervisor

Entity i Entity j
vS 1 vS 2 vS 3 vS 4

pS 1

pS 2 pS 3

pS 4Entity i Entity j

Flow rule

SDN controller

Virtual switch

Physical switch

Fig. 2: Relationship between a path and flow rules.

VNs and provides them to SDN controllers. Compared with
SDNs, there are two main characteristics of SDN-NV: topol-
ogy and address virtualization. Topology virtualization allows
the tenants to configure their arbitrary VN topology, which can
quite differ from the physical network. By using the NH, the
number of switches, ports, and link connections comprising a
VN topology can be freely configured. When the VN is created
with its virtual switches, the NH connects with the SDN
controllers of the tenants, as if the connection is made from an
ordinary SDN switch. Therefore, SDN controllers can operate
as though they control a physical network [8]. Also, through
address virtualization, the NH provides a virtual address that
allows each tenant to freely choose their addressing scheme
without worrying about conflicts with other tenants.

Fig. 2 explains the structure of SDN-NV: the top portion
represents the VN, and the bottom portion represents the
physical network. Each VN consists of end entities (e.g.,
entities A and B), virtual switches (e.g., vS 1, 2, 3, and
4), and virtual links that connect the virtual switches. When
new network traffic arrives, an event is delivered to the SDN
controller passing through the NH. Then, the SDN controller
calculates a path (routing) between entities for the traffic (e.g.,
vS1 to 4 in Fig. 2), and then sends flow rules (for individual
virtual switches) to NH. Upon receiving the flow rules, the
NH translates and installs each flow rule while considering
the address of the entities and virtual topology of the mapped
physical switches (e.g., pS 1 to 4) [32]. This example shows
that all network controls and operations are based on the flow
rule translation on NH.

B. Bandwidth Isolation Guarantee in SDN-NV

Because bandwidth is the critical performance metric of net-
work services, existing SDN-NV studies attempted to address
this issue. For example, FlowVisor [3] attempted to isolate
the bandwidth of each tenant. This isolation is achieved by
multiple priority queues at each switch, which is a common
feature of existing switches. By mapping the traffic of end
pairs to each queue, FlowVisor can only achieve bandwidth
management per queue. Therefore, this scheme is not really
a bandwidth isolation guarantee because the switch has a
limited number of queues (e.g., usually two to eight) [33].
Typically, a single tenant creates tens-of-hundreds of entities
[34]. Thus, the number of entity pairs easily exceeds the
number of queues. To the best of our knowledge, no NHs
have yet solved the bandwidth isolation guarantee problem.

C. Bandwidth Isolation Guarantee and Multipath Routing
We review related work to TeaVisor in two categories:

bandwidth isolation guarantee and multipath routing.
1) Bandwidth isolation guarantee: Existing studies of

bandwidth isolation can be categorized into two types: with
hose model or without hose model. Studies with hose model
[17]–[20] achieve the bandwidth isolation guarantee. However,
Studies without hose model [17], [21]–[23] do not completely
satisfy the guarantee—instead, the studies use proportional
share [17], switch queueing [19], or rate limiting on the
path [18], [20]–[23] with varying bandwidth isolation units
(e.g., per-tenant, per-entity, per-entity pair, and per-virtual
router management). In addition, there are various methods
to achieve rate limiting, including priority queueing [19],
logistical modeling [20], and credit-based modeling [23].
However, none of these existing studies are applicable in
solving the overloaded link problem illustrated in Fig. 1b
because SDN-NV allows tenants’ SDN controllers to perform
routing. Existing studies are summarized in Table I.

2) Multipath routing: Previous multipath routing [26]–[29]
studies focus on improving network utilization by splitting
traffic into multiple paths. These studies established traffic
splitting through a central controller [26], at network hops
[27], [29], and on software switches [28]. They also use global
network information [26], congestion information [27], and lo-
cal/partial information [28], [29]. Although they are successful
in improving network utilization, these studies do not attain
the bandwidth isolation guarantee. Moreover, they provide
routing schemes that create paths solely. This means that SDN-
NV allows SDN controllers of tenants to perform routing.
Thus, SDN-NV cannot use the previous multipath routing
scheme because the paths calculated from SDN controllers and
multipath routing studies cannot work independently of each
other. TeaVisor solves this problem through path virtualization.

III. DESIGN

A. Workflow
Fig. 3 shows the architecture of TeaVisor. TeaVisor en-

ables each tenant to specify bandwidth requirements for its
end entities (1 -1). So, bandwidth requirements are entered
per entity pair. TeaVisor supports two types of bandwidth
requirements: minimum and maximum (Min and Max). Also,
TeaVisor collects physical network information (e.g., total and
remaining link capacity) via network monitoring (1 -2).

The workflow of TeaVisor is as follows. When a new packet
flows between an entity pair, the physical network notifies
TeaVisor of the new traffic as an event (2 -1), and the event
is delivered to the SDN controller (2 -2). Then, the SDN
controller performs routing between the entity pair, resulting
in a set of flow rules for the switches, and the flow rules
are issued to TeaVisor (3). Upon receiving flow rules, path
virtualization (§III-B) crafts a virtual path (vPath) (4). The
vPath is an end-to-end forwarding path for an entity pair
consisting of a number of virtual switches and links.

Then, the bandwidth reservation component (§III-C) fulfills
the bandwidth isolation guarantee (5) by utilizing multiple

TABLE I: Bandwidth isolation guarantee–related work comparison.

Study VN Model Bandwidth
isolation guarantee

Bandwidth
isolation unit Method Overloaded

link problem
FairCloud PS-L/N [17] NA No Per-tenant or -entity Proportional share

Not
solved

FairCloud PS-P [17] Hose model Yes Per-entity Queueing in tree topology
ElasticSwitch [18] Hose model Yes Per-entity pair Rate allocation, limiting

Trinity [19] Hose model Yes Per-entity pair Switch priority queuing ECN
eBA [20] Hose model Yes Per-entity pair Rate control algorithm

Seawall [21] NA No Per-source entity Weight-based rate limiting
NetShare [22] NA No Per tenant Weight-based rate limiting

CreditBank [23] Virtual router model No Per virtual router Credit-based rate limiting
TeaVisor SDN-NV Yes Per-entity pair Multipath routing Solved

Path establishment

SDN controller

Bandwidth
requirements

New traffic
notification

Individual flow rule
on each virtual switch

Total/remaining
link capacity

New traffic
notification

Individual flow rule
on each physical switch

��

�� ��

��1

1 2

2 3

Bandwidth reservation
Max

assurance
Min

assurance
5 7

11

Path virtualization

vPath
abstraction

Multipath
derivationPath chart

4 6

9

Bandwidth requirements

Tenant

Physical
network

TeaVisor

10

8

Fig. 3: TeaVisor architecture and workflow.

physical paths (pPaths) and reserving bandwidths’ Min re-
quirements on switches and links that comprise the pPath. This
component works with the path virtualization component (6 -
7). Note that TeaVisor maintains the mappings of vPath and
pPaths as path chart (§III-B3) for the tenant’s network man-
agement (8). After reserving Min, the bandwidth reservation
component periodically checks the idle network capacity and
reserves the additional bandwidth for work conserving up to
Max (9). All paths and the reserved bandwidth are realized in
the physical network via the path establishment component
(10 - 11). A key aspect of TeaVisor is that it satisfies both
Min and Max of the vPath through the utilization of multiple
pPaths. We use the expression “satisfying Min on a vPath or
an entity pair” to mean “reserving Min amount for pPaths
transmitting packets for the entity pair of the vPath.”

B. Path Virtualization

Path virtualization crafts the vPath for an entity pair from
flow rules and identifies pPaths for the vPath. The challenge
of crafting a vPath is that TeaVisor cannot obtain an end-
to-end forwarding path directly from SDN controllers. What
TeaVisor gets from the SDN controllers are flow rules to be
installed on switches. However, each flow rule only contains
information about matching the packet header and transmitting
packets from the in-port to the out-port within a switch, which
makes it difficult for TeaVisor to determine a forwarding path.
As a solution, TeaVisor introduces a new scheme called “vPath
abstraction” to craft a virtual path from flow rules.

1) vPath Abstraction: Fig. 4 illustrates the process of vPath
abstraction. From flow rules from SDN controllers, TeaVisor
connects the flow rules from start to end (i.e., source entity
to destination entity) via rule chaining (explained below).

Specifically, when a new flow rule arrives, TeaVisor groups
the rule according to the path to which it belongs. Path
virtualization generates a “pathID,” an ID for each vPath, from
the flow rule (1© of Fig. 4). The pathIDs are used to identify
both vPaths and entity pairs. The pathID is a combination of
the tenant identifier and IP addresses of source and destination
entities. TeaVisor checks whether a pathID is new, and if so, it
indicates that a flow rule of a new vPath has arrived (2©). Then,
TeaVisor prepares a new vPath object to be created (2©-1).
Next, whenever a new flow rule arrives, it is checked whether
the vPath of its pathID already exists (3©).

If it does, the flow rule is used for rule chaining (4©) as
follows. Fig. 5 presents an example of rule chaining. Because
each flow rule of a switch is intended for packet forwarding, it
has the in-port and out-port information within a switch. For
example, for switch 1 in Fig. 5, the in-port is A, and the out-
port is B. The out-port is connected to the in-port of another
switch. In this case, out-port B is connected to port C of switch
2. In this way, TeaVisor traces flow rules one at a time, starting
from the source to destination entities. When the end-to-end
path is identified, the vPath abstraction is completed.

2) Multipath Derivation: Based on the vPath, multipath
derivation identifies pPaths, a set of physical switches and
links to deliver packets of entity pairs. The first pPath is
derived from the vPath as a set of physical switches and links
mapped to the virtual switches and virtual links of the vPath,
and it is denoted as “main path” (mPath). For example, in
Fig. 2, mPath derived from the vPath consists of physical
switches (e.g., pS 1 to 4) and the link that connects them.
However, because mPath is determined based on vPath, the
links of the mPath may become overloaded, as shown in Fig.
1b. To address this issue, TeaVisor uses multipath routing, in
which additional pPaths are derived for the vPath to satisfy
the bandwidth requirement. We call the additional paths for
satisfying the bandwidth requirement “extra paths” (exPaths).
With this, the traffic can be transmitted over multiple pPaths.

To utilize exPaths, multipath derivation designs a cost-
based routing algorithm. The cost of the algorithm is the
remaining bandwidth per link, so the algorithm calculates the
path having the highest remaining bandwidth in the physical
network. Additionally, the routing algorithm identifies exPaths
that are disjointed from the mPath of the same entity pair.
The bandwidth reservation component (§III-C) achieves the
bandwidth isolation guarantee by utilizing exPaths derived by
this routing algorithm.

① Generate
pathID

New flow rule
arrived

② New
pathID?

②-1. Create
new vPathYes

④ Rule
chaining

③ Connect the
flow rule

No

Fig. 4: vPath abstraction process.

…

Switch 1 Switch 2 Switch 3Entity i Entity j

Port A

Port B

Port C

Port D

Port E

Port F

Entity i to j →
Port A to Port B

Entity i to j →
Port C to Port D

Entity i to j →
Port E to Port F

Fig. 5: Rule chaining example.

… …

Pair1 mPath: 400Mbps
Pair2 exPath: 400Mbps

Pair1 mPath: 300 Mbps (Min) + 200 Mbps (Max)
Pair2 exPath: 300 Mbps (Min) + 200 Mbps (Max)

Pair1 exPath: 500 Mbps (Min), Pair2 mPath: 500 Mbps (Min)

A

B C

D
E F

G

Fig. 6: Bandwidth reservation
example.

3) Path Chart: The purpose of the path chart is to support
the network management of SDN controllers (e.g., network
monitoring) in the presence of the vPath and pPaths. The path
chart maintains the mappings of flow rules in the vPath and
pPaths. With such mappings, whenever the SDN controller
needs to manage its VN, the path chart determines the corre-
sponding pPath flow rules. We use the mapping structures for
the flow rules proposed in [35]. If the tenant modifies the flow
rule of a vPath, the flow rules in the physical network mapped
to the modified flow rule are also modified accordingly. In
addition, the path chart provides the statistics of all physical
flow rules mapped to the requested flow rule so that tenants
can monitor the statistics of the flow rules. TeaVisor uses the
algorithms proposed by [36] so that it delivers the aggregated
values of multiple statistical values of pPaths as the statistics
of a single vPath.

C. Bandwidth Reservation

The two bandwidth requirements, Min and Max, mean the
following for vPath: Min is the amount of bandwidth that is
always to be provided for the vPath, and up to Max bandwidth
can be reserved to the vPath in a best-effort manner for
work conserving. Tenants can request the following bandwidth
requirement combinations: 1) Min with no Max (denoted
[Min, Min]) and 2) Min with Max ([Min, Max])5. Note that
the optimal solution to the bandwidth reservation problem
in NV or SDN-NV is NP-hard [37] ; thus, we design two
greedy heuristics (Min assurance and Max assurance). Also,
in datacenters, the number of tenants, end entities, and the
traffic between the end entities are dynamically generated,
so we perform bandwidth reservation as the traffic of each
end entity is generated. If the Min and Max of an entity pair
changes, bandwidth reservation reruns for the changed values.

Fig. 6 shows an example of Min and Max assurance. We
assume two entity pairs, pair1 whose mPath is A-B-C-D
and pair2 with A-G-D as its mPath. Both have a bandwidth
requirement of [800 Mbps, 1200 Mbps], and the physical
network has 1 Gbps links. As the traffic of each entity pair is
generated, Min assurance satisfies Min. For example, for pair1,
300 Mbps is reserved on mPath (A-B-C-D) and the other 500
Mbps on exPath (A-G-D). For pair2, 500 Mbps is reserved on
mPath (A-G-D) and the other 300 Mbps on exPath (A-B-C-D).
After Min satisfaction, the algorithm for Max assurance runs
periodically. It reserves additional bandwidth using the idle
capacity of the physical network to both pPaths following the
policies to be explained in §III-C2). In the example of Fig. 6,

5Setting a value of Max as infinite, meaning that any additional bandwidth
over the entity pair is welcomed.

① Derive pCapa

vPath, mPath, Min

② pCapa>
Min*d?

③-1. Reserve
Min*d at mPath

Yes

No

④ Remaining
Min > 0?

②-1. pCapa
> 0?

③-2. Reserve
pCapa at mPath

③-3. Reduce
bandwidth

reserved for Max

⑤ Calculate exPath,
reserve the

remaining Min

⑥ Path
establishment

Yes
No

Yes

No
⑦ Not available,

reject vPath
End

Fig. 7: Min assurance workflow.

mPath and exPath each get 200 Mbps more. We explain Min
assurance and Max assurance in detail next.

1) Min Assurance: Min assurance achieves bandwidth iso-
lation guarantee using multipath routing. The goal of Min
assurance is to satisfy as many entity pairs as the physical
network capacity permits by properly utilizing mPath and
exPath. Also, we ensure that the mPath is preserved in the
physical network and that the packets flow through the mPath
because it is the one directly derived from vPath from tenants.
However, there can be a case where the mPath of a new entity
pair may not be able to transmit packets because the other
entity pairs have already consumed all of the bandwidth of
the links in the mPath. For example, in Fig. 7, assume that a
new entity pair starts its traffic, its bandwidth requirement is
[800 Mbps, 1200 Mbps], and mPath for the entity pair is A-B-
C-D. In this situation, Min assurance cannot reserve bandwidth
on mPath because the other entity pairs already reserved it all.
As a remedy to this situation, Min assurance secures a certain
amount of bandwidth for an entity pair through parameter d
(explained later).

Min assurance works with a vPath (from vPath abstraction),
the corresponding mPath (from multipath derivation), and Min
for the entity pair. Min assurance uses two parameters: physical
capacity (pCapa) and bandwidth reservation ratio (d). pCapa
is the amount of bandwidth that can be reserved for a pPath.
The amount of available bandwidth of a pPath is determined by
the most congested link of a pPath; so, pCapa is the remaining
bandwidth of the most congested link. d is a tunable parameter
of TeaVisor that determines the portion of Min to be reserved
in mPath, ranging from zero to one.

Min assurance first derives pCapa of the given mPath (1©
of Fig. 7). Min assurance then checks that pCapa of mPath is
sufficient for Min∗d (2©). If pCapa satisfies Min∗d (pCapa >
Min ∗ d), Min ∗ d is reserved on mPath (3©-1). Here, if d is
1, the entire amount of Min can be reserved to mPath. On
the other hand, if d approaches 0, the bandwidth that can be
reserved on mPath becomes smaller. By reserving Min∗d, the
remaining Min becomes Min ∗ (1 − d). Note that, from here,

Min is updated as the remaining Min.
Next, if Min >0, (“yes” condition of 4©), TeaVisor utilizes

exPaths and reserves the Min on the exPaths (5©). Specifically,
exPath is created one at a time with the assistance of multipath
derivation. If the pCapa of the created exPath (pCapaexPath)
is sufficient for Min (pCapaexPath > Min), we reserve
Min on exPath and complete exPath creation. However, if
pCapaexPath < Min, we reserve pCapaexPath on exPath,
calculate remaining Min (Min − pCapaexPath), and create
another exPath to reserve the remaining Min. Routine 5©
is repeated until the remaining Min becomes zero. When
repeating this routine, if no additional exPaths can be created,
and Min is still left over (Min > 0), it means that the network’s
capacity is deficient. Thus, bandwidth reservation for the entity
pair is rejected6 (7©). On the contrary, if Min = 0, which
means that all of Min is reserved (“no” condition of 4©), Min
assurance is completed, and “path establishment” is called to
install paths and bandwidth reservations (6©).

On the other hand, if pCapa is less than Min ∗ d from 2©,
Min assurance first checks whether the pCapa of mPath is zero
(2©-1). If not, we only reserve the amount of pCapa on mPath
(3©-2), and the remaining Min becomes Min–pCapa. We
then reserve the remaining Min on exPaths using the process
starting from 4©. However, if the pCapa is zero, it means
that all bandwidth is reserved already. Therefore, we cannot
reserve any bandwidth on mPath. We then first check whether
the bandwidth of the link that decides pCapa has been reserved
for the other entity pair’s Max assurance (3©-2). Assume that,
in Fig. 6, a new mPath is A-B-C-D whose pCapa= 0. In this
situation, the bandwidth reserved for Max can be reduced to
secure bandwidth for a new mPath; because the bandwidth for
Max is not mandatory, it can be dynamically regulated. On the
other hand, if the bandwidth reserved for Max does not exist,
this means that the physical network cannot accept the entity
pair with Min, so we reject the entity pair’s vPath (7©). Then,
in order to accept a greater number of entity pairs, a careful
tuning of parameter d is required (e.g., smaller d for handling
more entity pairs).

2) Max Assurance: Max assurance provides work conserv-
ing for TeaVisor. Note that Max assurance does not create
or remove additional paths; instead, it only adds bandwidth to
the existing pPaths. Algorithm 1 describes how Max assurance
works. Max assurance runs at a regular interval to check
whether there is any remaining bandwidth within the physical
links (line 2 in Alg. 1). If a physical link (li) has idle
bandwidth, Alg. 1 finds pPaths (Pn) whose pCapa is decided
by li (line 3). Then, according to the three policies below, Max
assurance divides the idle bandwidth of li for Pn:

• Equal share (ES, line 6): divide idle bandwidth equally
between Pn.

• Proportional share for bandwidth requirements (PBR, line
7): divide the idle bandwidth according to the ratio of Min
between Pn.

6Note that, like other bandwidth isolation guarantee or multipath routing
studies, TeaVisor accepts and satisfies the bandwidth requirements to the
extent that is acceptable to the physical network.

Algorithm 1: Max assurance.
• Mina, Maxa: Min, Max of the entity pair that pPath a belongs to
• R.Maxa: Amount of additional bandwidth reserved for Max on

the entity pair to which pPath a belongs
• uk: The current throughput of pPath k
• lk.remn: remaining bandwidth of lk
• B(i, j), M(i.j): Select bigger and smaller values, respectively
for li in physical network links do

if remaining bandwidth of li> 0 then
Find Pn, a set of pPaths whose pCapas are
determined by li
for k in Pn do

rk = B(0,Maxk −Mink −R.MaxkP

if ES then Resv = M(li/|Pn|, rk)
if PBR then

Resv = M(li ∗Mink/
∑

i∈Pn
Mini, rk)

if PNU then
Resv = M(li ∗ uk/

∑
i∈Pn

ui, r
k)

R.Maxk+ = Resv
For each link lk belong to k, lk.remn– = Resv
Request increasing the rate of the k

swA
swB swC

swD swE
swF

Separation ruleForwarding rule Rate limiting rule

Entity i Entity j

mPath

exPath

Fig. 8: Path establishment example.

• Proportional share for actual network usage (PNU, line
8): divide the idle bandwidth based on the ratio of the
monitoring results on the pPaths of Pn (actual throughput
used within the reserved bandwidth).

For all three policies, Max assurance ensures that the total
bandwidth reserved for an entity pair is lower than Max (line
5 and M functions on lines 7–9).

D. Path Establishment

Using path virtualization (§III-B) and bandwidth reservation
(§III-C), TeaVisor derives multiple pPaths (i.e., an mPath and
exPaths) and allocates the reserved bandwidth to them. The
path establishment installs flow rules to substantiate bandwidth
isolation in the physical network. Specifically, pPaths and their
reserved bandwidths are converted into three types of flow
rules: forwarding rule, separation rule, and rate limiting rule.

The forwarding rule is similar to the example found in Fig.
8 that delivers packets from the in-port to out-port within
a switch. For mPath, flow rules are generated by translating
flow rules sent by SDN controllers of tenants, which includes
translation between virtual and physical networks (i.e., host
address, switch address, in-port, and out-port). However, for
exPaths, TeaVisor creates new flow rules because exPaths are
created solely by TeaVisor. One of the new flow rules is the
separation rule, which divides packets into multiple pPaths.
Suppose that pPaths for an entity pair A and B are two pPaths:

(a) Physical network (gray) and
mapped VN 1 (blue).

(b) VN topology layout.

Fig. 9: Network topology.

mPath of swA-swB-swC-swF and exPath of swA-swD-swE-
swF, as shown in Fig. 8. Then, the separation rule is installed
at swA where the two paths are split. Another new flow rule
is the rate limiting rule. It limits packet transmission rate
under the reserved bandwidth to prevent certain entity pairs
from consuming excessive amounts of bandwidth. For the rate
limiting rule, TeaVisor uses the meter table of OpenFlow (OF)
1.3. In Fig. 8, we install the rules for mPath and exPath on
swB and swD, respectively.

IV. IMPLEMENTATION AND EVALUATION

We implement all components of TeaVisor based on Libera
(4.7K LoCs of Java). We use OF 1.3, the de-facto interface
in SDN systems commonly supported by commercial SDN
switches. TeaVisor implements separation and rate limiting
rules using the group table and meter table mechanisms of
OF 1.3. We empirically set the value of parameter d to 0.5
and perform network monitoring for Max assurance at every
5 s. We compare TeaVisor with two NHs:

• Libera. This is the latest open-source NH without any
bandwidth isolation guarantee. We measure the improve-
ment of TeaVisor over Libera.

• Libera+RL. On top of Libera, we implement an existing
algorithm of bandwidth isolation guarantee (i.e., rate
limiting on each path as its Min) on SDN-NV. The
purpose is to show that the existing studies are insufficient
to handle the overloaded link problem.

A. Evaluation Environments

Three servers of Intel Xeon E5-2600 CPUs are deployed for
our evaluations. They are connected through a 10 GbE switch.
We run Mininet of Open vSwitches [38] for the physical
network, and ONOS [39] is used as an SDN controller. As the
physical network, we set a 4-ary fat-tree topology commonly
used in datacenters (Fig. 9a). In addition, the VN topology is
set as shown in Fig. 9b, consisting of 10 switches and four
entities. In the evaluation, a tenant has four entity pairs, and
each entity pair sends 128 TCP connections using iperf3 [40]
at full speed. Bandwidth requirements are entered per entity
pair. We conduct extensive measurements. However, owing
to space limitations, only representative results are presented
in this paper. However, the tendency of the omitted results
is similar to the results shown. The evaluation of TeaVisor
consists of three experiments.

1) Bandwidth Isolation Guarantee (§IV-B): We evaluate the
bandwidth isolation guarantee by measuring the error rates
on Min and Max, with changes to the amounts of bandwidth
requirements and the number of tenants.

37.5% 50% 62.5% 75% 87.5% 100%

0
2
4

20

70

120

Total of bandwidth requirements (%)

 E
rro

r r
at

e
to

 M
in

 (%
) TeaVisor Libera+RL

Libera

(a) Total amount of bandwidth re-
quirements.

1 tenant
(4 entity pairs)

2 tenants
(8 entity pairs)

3 tenants
(12 entity pairs)

4 tenants
(16 entity pairs)

0

50

100

150

Number of tenants

 E
rro

r r
at

e
to

 M
in

 (%
) TeaVisor Libera+RL

Libera

(b) Number of tenants.

Fig. 10: Error rates to Min ([Min, Min] case).

For these changes, we vary the total amount of Min (total
Min) proportional to the entire network capacity (i.e., 37.5 to
100% because we find that the results under 37.5% are similar
to that of 37.5%) with 16 entities of four tenants. For Max,
we set Max as 120% of Min because it is more challenging
to guarantee bandwidth isolation when the gap between Max
and Min is small. We run experiments for two cases: [Min,
Min] and [Min, Max]. For [Min, Max] (e.g., Fig. 13b), the x
and the circle marks show Min and Max, respectively, given
to each entity pair. Of the total Min, eight entity pairs (i.e., 1,
4, 5, 8, 9, 12, 13, and 16 entity pairs in Fig. 13b) are set to
require 90% of the total Min, and the remaining eight entity
pairs consume the other 10%.

Regarding the number of tenants, we increase the number
from one to four. Each tenant has four entity pairs. The total
bandwidth requirement of one tenant is 25% of the physical
network capacity. Thus, as the number of tenants increases to
four, the number of entity pairs and the bandwidth requirement
increases proportionally, up to 16 pairs and 100%, respectively.

2) Effects of Max Assurance Policies (§IV-C): We analyze
the effect of the three Max assurance policies (i.e., ES, PBR,
and PNU) by measuring the additional bandwidth reserved
for entity pairs. We present results of four tenants (16 entity
pairs) having a total bandwidth requirement (Min) of 50% of
physical network capacity. Max is set as infinite.

3) Overheads (§IV-D): We evaluate the overhead of TeaVi-
sor from two aspects: control traffic consumption and memory
consumption of TeaVisor. Control traffic reflects the overhead
of path virtualization and bandwidth reservation components
because the multiple pPaths and reserved bandwidth require
additional flow rules. Also, because the TeaVisor’s components
are all in NH, the memory consumption shows the increased
resource consumption of TeaVisor. We present the results
when the number of tenants changes from one to four.

B. Bandwidth Isolation Guarantee

1) Minimum Bandwidth Requirements: In Fig. 10a and 10b,
the y-axis is the error rate of Min, implying that the bandwidth
is lower than Min (as error). The error rates are measured by
varying the total amount of bandwidth requirements (Fig. 10a)
and the number of tenants (Fig. 10b). An error rate of 0%
means that the entity pair receives at least the Min amount
of bandwidth during the experiments. The points and lines
in Fig. 10 are the mean values and the range of error rates
for TeaVisor, Libera+RL, and Libera, respectively. The results

37.5% 50% 62.5% 75% 87.5% 100%
0
5

10
15
20

500

1000

1500

2000

2500

Total of bandwidth requirements (%)

Er
ro

r r
at

e
to

 M
ax

 (
%

) TeaVisor Libera+RL
Libera

(a) [Min, Min]

37.5% 50% 62.5% 75% 87.5% 100%

0
5

10

500

1000

1500

2000

2500

Total of bandwidth requirements (%)

Er
ro

r r
at

e
to

 M
ax

 (
%

) TeaVisor Libera+RL
Libera

(b) [Min, Max]
Fig. 11: Error rates to Max by varying the number of band-
width requirements.

lacking lines indicate that the error rates for each entity pair
are quite similar (e.g., TeaVisor’s error rate at 37.5% is marked
as a star in Fig. 10a, and its value is almost zero).

In Fig. 10a, TeaVisor, Libera+RL, and Libera show error
rates on average of 0.01, 12, and 10%, respectively. We first
compare TeaVisor with Libera+RL to illustrate the overloaded
link problem. Up to the bandwidth requirement of 50%, TeaV-
isor and Libera+RL show similar error rates (0% on average).
This is because physical links are not overloaded. However,
once the bandwidth requirements exceed 50%, links become
overloaded, so Libera+RL’s error rate increases dramatically
up to 89%.

Second, by comparing Libera+RL with Libera (Fig. 10a),
Libera+RL’s average error rate is slightly higher than that of
Libera’s. To see the reason, we calculate the peak error rates of
Libera+RL and Libera, which are 89 and 69%, respectively.
In addition, among the 16 entity pairs, four and six entity
pairs show non-zero error rates for Libera+RL and Libera.
This means that, even if Libera+RL perfectly satisfies the
Min of two more entity pairs than Libera, the error rate of
an unsatisfied entity pair is much higher than that of Libera,
which increases the average error rate. This is because of the
rate limiting of Libera+RL; some entity pairs fully obtain the
bandwidth of their Min, whereas the other entity pairs suffer
from bandwidth starvation, which leads to high error rates
(e.g., 89%). On the other hand, Libera does not control any
bandwidth, so the traffic between entity pairs compete for the
limited bandwidth. Thus, many of them do not satisfy Min
requirements but also do not suffer from starvation. Therefore,
compared with Libera+RL, Libera shows less value on the
highest error rate.

In Fig. 10b of multi-tenant results, the peak error rates of
Libera+RL and Libera are 96 and 60%, respectively, even with
one tenant. Similar results are seen with two to four tenants.
Note that TeaVisor shows 0% error rates with one to four
tenants, which demonstrates that TeaVisor successfully guar-
antees Min under the varying number of tenants. The results
are caused by the reasons explained in previous sections.

2) Maximum Bandwidth Requirements: We evaluate the
effect of Max by varying the total amount of bandwidth
requirements and the number of tenants. The amount of
bandwidth higher than Max is considered as an error, and the
Max error rate of zero means that the entity pair has reserved
its bandwidth lower than Max. When the bandwidth is below
Min, the maximum error rate becomes zero. The evaluation

1 tenant
(4 entity pairs)

2 tenants
(8 entity pairs)

3 tenants
(12 entity pairs)

4 tenants
(16 entity pairs)

0
5

10
15

500

1000

1500

2000

Number of tenants

Er
ro

r r
at

e
to

 M
ax

 (
%

) TeaVisor

Libera+RL
Libera

(a) [Min, Min]

1 tenant
(4 entity pairs)

2 tenants
(8 entity pairs)

3 tenants
(12 entity pairs)

4 tenants
(16 entity pairs)

0

5

500

1000

1500

2000

Number of tenants

Er
ro

r r
at

e
to

 M
ax

 (
%

) TeaVisor

Libera+RL

Libera

(b) [Min, Max]
Fig. 12: Error rates to Max by varying the number of tenants.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

400

500

Entity pair

Th
ro

ug
hp

ut
 (M

bp
s)

Min Max TeaVisor

LiberaLibera+RL

(a) [Min, Min]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

300

400

500

Entity pair

Th
ro

ug
hp

ut
 (M

bp
s)

Min Max TeaVisor

Libera+RL Libera

(b) [Min, Max]
Fig. 13: Throughput according to Min and Max.

results are shown in Figs. 11 and 12.
Fig. 11a shows the results of 16 entity pairs. In [Min,

Min], TeaVisor, Libera+RL, and Libera show average error
rates of 5, 6, and 519%, respectively, over the total bandwidth
requirements. Additionally, in Fig. 11b which illustrates [Min,
Max], the error rates of TeaVisor, Libera+RL, and Libera
are 0.3, 0, and 360%, respectively. We analyze the results
as follows. First, the high error rates of Libera are because
entity pairs consume bandwidth arbitrarily. Second, TeaVisor
and Libera+RL show quite similar error rates on Max, meaning
that both NHs provide bandwidth lower than Max. However,
Libera+RL does not provide additional bandwidth for work
conservation. For the evaluations of Fig. 11b where TeaVisor
reserves additional bandwidth within Max, we find that entity
pairs with TeaVisor gain 18.1% higher throughputs than Min
on average (these results are not depicted because of space
limitations). Considering that we set Max as 20% higher than
Min, this result is reasonable. On the other hand, entity pairs
in Libera+RL lose 9% throughput than their Min, implying
less network utilization.

Next, Fig. 12a and 12b show the Max error rates when
varying the number of tenants. For Fig. 12a, the average error
rates of TeaVisor, Libera+RL, and Libera are 5.9, 5.9, and
280%, respectively. In addition, in Fig. 12b, their average error
rates are 0, 0, and 323%, respectively. The reasons for such
results are the same those shown in Fig. 11.

3) Throughput: We now explain the actual throughput that
each entity pair gains with four tenants. The sum of Min given
to this experiment is 75% of the entire network capacity. Fig.
13a and 13b show the bandwidth requirement combinations
of [Min, Min] and [Min, Max], respectively. As expected, the
throughput of TeaVisor is higher than Min but lower than Max
(106% of Min in Fig. 13a and 119% of Min in Fig. 13b).
On the other hand, Libera+RL shows 42% less throughput on
average than Min for four entity pairs (4, 5, 12, and 13 in Fig.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

Entity pair

Th
ro

ug
hp

ut
 (

M
bp

s)

Min ES PBR PNU

Fig. 14: Throughput changes of entity pairs per Max assurance
policies.

1 tenant
(4 entity pairs)

2 tenants
(8 entity pairs)

3 tenants
(12 entity pairs)

4 tenants
(16 entity pairs)

0

100

200

300

400

500

Number of tenants

Am
ou

nt
 o

f t
ra

ffi
c

(M
B)

TeaVisor -
forwarding

TeaVisor -
separation

TeaVisor -
rate limiting

Libera - forwarding

Libera+RL -
forwarding

Libera+RL -
rate limiting

Fig. 15: Control traffic com-
parison.

1 tenant
(4 entity pairs)

2 tenants
(8 entity pairs)

3 tenants
(12 entity pairs)

4 tenants
(16 entity pairs)

0

200

400

600

Number of tenants

M
em

or
y

co
ns

um
pt

io
n

(M
B) TeaVisor Libera+RL

Libera

Fig. 16: Memory consumption
comparison.

13a), and Libera also shows 47% less throughput than Min
on four entity pairs (1, 4, 8, and 16 in Fig. 13a). In terms
of Max, Libera+RL does not exceed Max similar to TeaVisor.
However, for Libera, 10 entity pairs show higher throughput
than Max (all entity pairs except 1, 4, 8, 9, 12, and 16 in
Fig. 13b). The reasons for such results are similar to those
explained in §IV-B1 and §IV-B2.

C. Effects of Max Assurance Policies

Fig. 14 shows the amount of additionally reserved band-
width per Max assurance policies (i.e., ES, PBR, and PNU)
explained in §III-C2. We investigate how the idle network
capacity is divided for each entity pair. The experiment settings
are explained in §IV-A2. The x-axis represents each entity pair,
whereas the y-axis shows the additional bandwidth reserved
by policies. The graphs in Fig. 14 are the throughput gained
for each entity pair when the policy is applied. Eight entity
pairs (i.e., 1, 4, 5, 8, 9, 12, 13, and 16) consume 90% of the
total Min (consuming high bandwidth), and the other eight
consume the remaining 10% (consuming low bandwidth). So,
the graphs in Fig. 14 look like a step function. In addition, the
line without marks is the amount of Min.

In Fig. 14, PBR and PNU have similar patterns. However,
ES is different in that the additional throughput is less than
PBR and PNU in entity pairs that consume high bandwidth and
more with entity pairs consuming low bandwidth. On average,
however, the sum of the additional throughput gained by the
entity pair between the three policies differs by only 0.2%,
which means that the policies use all of the available capacity
of the physical network.

D. Overheads

1) Control Traffic Consumption: Fig. 15 shows the total
amount of control traffic generated for installing forward-
ing, separation, and rate limiting rules. In addition to the

forwarding rule, Libera+RL installs a rate limiting rule, and
TeaVisor installs separation rule and rate limiting rules to
satisfy the bandwidth isolation guarantee. TeaVisor installs
multipaths (e.g., two to three paths in our case), but Libera
and Libera+RL install only one path. Therefore, TeaVisor
inevitably consumes more control traffic for the flow rule
installation. As a result, Fig. 15 shows that TeaVisor consumes
2.6and 2.9 times more control traffic than Libera+RL and
Libera. This overhead is unavoidable for TeaVisor to provide
substantial improvements on bandwidth isolation guarantee.
However, considering that flow rule installations occur at once
for a path between entity pairs, we believe that this overhead
does not affect the throughput.

2) Additional Memory Consumption: Fig. 16 shows the
average memory consumption. It is expected that TeaVisor
consumes additional memory for the path chart (e.g., vPath
and pPath objects). Therefore, we optimize the internal object
management of TeaVisor (e.g., avoiding redundant object
allocation). As a result, TeaVisor consumes 99.7% of Libera’s
memory consumption on average; so, the memory consump-
tion of TeaVisor is similar to those of existing studies without
the bandwidth isolation guarantee.

V. DISCUSSION

We discuss further research issues related to TeaVisor:
Scalability. As the SDN structure manages a network with
a central entity, it could become a bottleneck in terms of
scalability. This is similar to TeaVisor in that it provides the
bandwidth isolation guarantee in NH. In fact, this problem is a
fundamental challenge in the SDN structure that puts network
control with a central entity. As a solution, several studies and
SDN controllers suggest a physically distributed but logically
central structure. This architecture has also been designed for
NH [41]. Thus, we expect TeaVisor to be readily extended to
such architectures.

Applicability on SDN. One might be concerned about
whether TeaVisor can work with a non-virtualized SDN. We
think this is possible because there is already an approach [6]
to use SDN-NV for managing a physical network with existing
SDN controllers. The components of TeaVisor could act as a
proxy between the controllers and the physical network.

VI. CONCLUSION

This paper presents TeaVisor, the first bandwidth isolation
guarantee framework for SDN-NV with three components:
path virtualization, bandwidth reservation, and path establish-
ment. We evaluate TeaVisor for the error rate of bandwidth
isolation guarantee and overheads with comprehensive evalua-
tion cases. We find that TeaVisor achieves near-zero error rates
for both the minimum and maximum bandwidth requirements.
In addition, through implementation optimization, TeaVisor
consumes no additional memory compared with existing NHs.

We hope TeaVisor to trigger future research applying SDN-
NV to real-world scenarios. We plan to work on predicting
the control traffic in order to improve the accuracy of the
prediction so that bandwidth isolation guarantee of TeaVisor
can become practically meaningful.

REFERENCES

[1] A. Rodriguez-Natal, V. Ermagan, A. Noy, A. Sahai, G. Kaempfer,
S. Barkai, F. Maino, and A. Cabellos-Aparicio, “Global state, local
decisions: decentralized NFV for ISPs via enhanced SDN,” IEEE
Communications Magazine, vol. 55, no. 4, pp. 87–93, 2017.

[2] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, “Emerging transport
SDN architecture and use cases,” IEEE Communications Magazine,
vol. 54, no. 10, pp. 116–121, 2016.

[3] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. M. Parulkar, “Can the production network be the testbed?”
in OSDI, vol. 10, 2010, pp. 1–6.

[4] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, 2012.

[5] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” in Proceedings of the third workshop on Hot topics
in software defined networking, 2014, pp. 25–30.

[6] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A compositional
hypervisor for software-defined networks,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), 2015, pp.
87–101.

[7] G. Yang, B.-y. Yu, S.-M. Kim, and C. Yoo, “LiteVisor: A network
hypervisor to support flow aggregation and seamless network recon-
figuration for VM migration in virtualized software-defined networks,”
IEEE Access, vol. 6, pp. 65 945–65 959, 2018.

[8] G. Yang, B.-y. Yu, H. Jin, and C. Yoo, “Libera for programmable
network virtualization,” IEEE Communications Magazine, vol. 58, no. 4,
pp. 38–44, 2020.

[9] H. Jin, G. Yang, B.-y. Yu, and C. Yoo, “FAVE: Bandwidth-aware
failover in virtualized SDN for clouds,” in 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 2019, pp. 505–507.

[10] Y. Yoo, G. Yang, M. Kang, and C. Yoo, “Adaptive control channel traffic
shaping for virtualized SDN in clouds,” in 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD), 2020, pp. 22–24.

[11] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “NaaS: Network-
as-a-service in the cloud,” in 2nd USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE 12), 2012.

[12] M. Kang, G. Yang, Y. Yoo, and C. Yoo, “TensorExpress: In-network
communication scheduling for distributed deep learning,” in 2020 IEEE
13th International Conference on Cloud Computing (CLOUD), 2020,
pp. 25–27.

[13] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur et al., “Deep learning inference in
facebook data centers: Characterization, performance optimizations and
hardware implications,” arXiv preprint arXiv:1811.09886, 2018.

[14] M. Kang, G. Yang, Y. Yoo, and C. Yoo, “Proactive congestion avoidance
for distributed deep learning,” Sensors, vol. 21, no. 1, 2021.

[15] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “Hug: Multi-resource
fairness for correlated and elastic demands,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16), 2016, pp.
407–424.

[16] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud
network performance,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 5, pp. 44–48, 2012.

[17] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,”
in Proceedings of the ACM conference on SIGCOMM 2012, 2012, pp.
187–198.

[18] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “ElasticSwitch: Practical work-conserving bandwidth guarantees
for cloud computing,” in Proceedings of the ACM conference on
SIGCOMM 2013, 2013, pp. 351–362.

[19] S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu, “Providing band-
width guarantees, work conservation and low latency simultaneously in
the cloud,” IEEE Transactions on Cloud Computing, 2018.

[20] F. Liu, J. Guo, X. Huang, and J. C. Lui, “eBA: Efficient bandwidth guar-
antee under traffic variability in datacenters,” IEEE/ACM Transactions
on Networking, vol. 25, no. 1, pp. 506–519, 2016.

[21] J. Son and R. Buyya, “Priority-aware VM allocation and network
bandwidth provisioning in software-defined networking (SDN)-enabled

clouds,” IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp.
17–28, 2018.

[22] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, NetShare:
Virtualizing data center networks across services. [Department of
Computer Science and Engineering], University of California . . . , 2010.

[23] K. Lee, C.-H. Hong, J. Hwang, and C. Yoo, “Dynamic network schedul-
ing for virtual routers,” IEEE Systems Journal, 2019.

[24] D. S. Marcon, F. M. Mazzola, and M. P. Barcellos, “Achieving minimum
bandwidth guarantees and work-conservation in large-scale, SDN-based
datacenter networks,” Computer Networks, vol. 127, pp. 109–125, 2017.

[25] A. Lee, P. Wang, S.-C. Lin, I. F. Akyildiz, and M. Luo, “Dynamic
bandwidth allocation in SDN based next generation virtual networks: a
deterministic network calculus approach,” in Proceedings of the 2018
Conference on Research in Adaptive and Convergent Systems, 2018, pp.
80–87.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
NSDI, vol. 10, no. 8, 2010, pp. 89–92.

[27] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “CONGA:
Distributed congestion-aware load balancing for datacenters,” in Pro-
ceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 503–
514.

[28] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aware load balancing at the virtual
edge,” in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies, 2017, pp. 323–335.

[29] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 225–238.

[30] J. Guo, F. Liu, T. Wang, and J. C. Lui, “Pricing intra-datacenter networks
with over-committed bandwidth guarantee,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17), 2017, pp. 69–81.

[31] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network virtual-
ization: a hypervisor for the internet?” IEEE Communications Magazine,
vol. 50, no. 1, pp. 136–143, 2012.

[32] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of ONOS reactive forwarding applications in isp networks,”
Computer Communications, vol. 102, pp. 130–138, 2017.

[33] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “PIAS: prac-
tical information-agnostic flow scheduling for commodity data centers,”
IEEE/ACM Transactions on Networking, vol. 25, no. 4, pp. 1954–1967,
2017.

[34] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: a scalable multi-tenant network architecture for virtual-
ized datacenters,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4, pp. 62–73, 2011.

[35] G. Yang, B.-y. Yu, W. Jeong, and C. Yoo, “FlowVirt: Flow rule virtual-
ization for dynamic scalability of programmable network virtualization,”
in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 2018, pp. 350–358.

[36] G. Yang, H. Jin, M. Kang, G. J. Moon, and C. Yoo, “Network monitoring
for SDN virtual networks,” in IEEE INFOCOM 2020-IEEE Conference
on Computer Communications. IEEE, 2020, pp. 1261–1270.

[37] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[38] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), 2015, pp.
117–130.

[39] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1–6.

[40] V. Gueant, “iperf-the tcp, udp and sctp network bandwidth measurement
tool,” Iperf. fr. Np, 2017.

[41] Y. Han, T. Vachuska, A. Al-Shabibi, J. Li, H. Huang, W. Snow, and
J. W.-K. Hong, “ONVisor: Towards a scalable and flexible sdn-based
network virtualization platform on ONOS,” International Journal of
Network Management, vol. 28, no. 2, p. e2012, 2018.

	Introduction
	Background and Related Work
	SDN-NV
	Bandwidth Isolation Guarantee in SDN-NV
	Bandwidth Isolation Guarantee and Multipath Routing
	Bandwidth isolation guarantee
	Multipath routing

	Design
	Workflow
	Path Virtualization
	vPath Abstraction
	Multipath Derivation
	Path Chart

	Bandwidth Reservation
	Min Assurance
	Max Assurance

	Path Establishment

	Implementation and Evaluation
	Evaluation Environments
	Bandwidth Isolation Guarantee (§IV-B)
	Effects of Max Assurance Policies (§IV-C)
	Overheads (§IV-D)

	Bandwidth Isolation Guarantee
	Minimum Bandwidth Requirements
	Maximum Bandwidth Requirements
	Throughput

	Effects of Max Assurance Policies
	Overheads
	Control Traffic Consumption
	Additional Memory Consumption

	Discussion
	Conclusion
	References

