
1

Libera for Programmable Network Virtualization
Gyeongsik Yang, Member, IEEE, Bong-yeol Yu, Heesang Jin, and Chuck Yoo, Member, IEEE

Abstract—Current network virtualization al-
lows tenants to have their own virtual net-
works. However, new demands to “program” vir-
tual networks at a finer granularity have arisen
in that tenants want the ability to provision
and control switches and links in their virtual
networks. This study proposes a new concept
called programmable network infrastructure-as-
a-service (p-NIaaS) model. The p-NIaaS model
enables tenants to program their own packet pro-
cessing logic and monitor network status from
any virtual network infrastructure, which is not
possible with the current network virtualization.
This article presents Libera network hypervi-
sor that implements the p-NIaaS model. Libera
overcomes the shortcomings of existing network
hypervisors such as scalability, VM migration
support, and flexibility. The evaluation shows that
Libera platform is highly scalable and effectively
supports VM migration. We also present the over-
heads of Libera. Libera incurs up to 11 percent
overhead in comparison with a non-virtualized
network, which we believe is promising in the
first prototype of the p-NIaaS model.

I. INTRODUCTION

Cloud datacenters (DCs) are becoming integral
infrastructures for IT services. Major services
like “Netflix” and “GE” are operated on public
clouds, such as “Microsoft Azure” and “Amazon
Web Services (AWS).” Public clouds employ var-
ious service models such as infrastructure-as-a-
service (IaaS) and platform-as-a-service (PaaS)
to meet tenant demands [1]. Each service model
provides computing infrastructures, such as vir-
tual machines (VMs) or containers, and software
environments for tenants.

Because network traffic flows over switches
and routers, cloud networking requires network
virtualization (NV), where the network infrastruc-
tures (NIs), such as ports, links, and switches,

The authors are with the Department of Computer Science and
Engineering, Korea University, Seoul, Republic of Korea.

are virtualized and provided in the form of a
virtual network (VN). Tenants are provisioned
with VNs using NIs. NVP (VMware) [2] and VFP
(Microsoft) [3] are good examples of NV in DC.

The main objective of the current NV, exem-
plified by platforms such as NVP and VFP, is to
automate the provision of VNs so that the time re-
quired to configure a VN is significantly reduced
[2], [3]. However, the current NV does not allow
tenants to manage their own VNs. Virtual NIs1

for tenants, such as virtual switches (vSwitches),
ports, and links, are created and controlled by
DC administrators rather than by tenants directly.
This contrasts with server virtualization, where
tenants are empowered to provision, control, and
monitor (in short, to program) all of their com-
puting resources.

The demand for tenant programmability of
virtual NIs has arisen for a variety of reasons. One
is software-defined networking (SDN), whose
premise is to separate the control plane from the
data plane, allowing the central controller to man-
age the data plane. Tenants are now aware of SDN
and want to control virtual NIs via controllers,
posing a new demand to cloud providers [4].
Other demands are to provide topology provision-
ing, custom packet processing logic, and network
monitoring per tenant [5].

The reason for the lack of tenant programma-
bility is that current NV does not expose virtual
NIs to tenants. Therefore, tenants do not have
any direct programmability. In addition, VNs are
based on overlay so that tenants can install their
desired network policies only to edge switches,
but not to other virtual NIs. Therefore, the ap-
plicable policies are quite restricted, and tenants
have very limited programmability over virtual
NIs.

This article explores how to extend NV to
the level of server virtualization so that tenants
can program their virtual NIs per their needs.
To this end, we propose a novel service model

1In this article, NI is used as a generic term; virtual NI and
physical NI are used accordingly in the context.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This is an accepted version. Final article—DOI: 10.1109/MCOM.001.1900290

https://ieeexplore.ieee.org/document/9071987


2

called programmable NI-as-a-service (p-NIaaS)
that empowers tenants to program virtual NIs
directly. With the p-NIaaS model, tenants can
specify and create their own VN topologies. In
addition, p-NIaaS allows tenants to manage their
NIs using SDN controllers.

We implement the p-NIaaS model through a
network hypervisor (NH) called Libera. It creates
multiple virtual SDNs while assuring isolation be-
tween them. Libera differs from existing NHs in
three aspects: scalability, VM migration support,
and flexibility.

This article is organized with the background,
motivation, related work, and concept of the p-
NIaaS model. Then, Libera and its evaluation
results are presented. Finally, we conclude this
article.

II. MOTIVATION AND RELATED WORK

Here, we explain the current NV and the
necessity of p-NIaaS. Then, we review existing
NHs, identifying their limitations. Subsequently,
we introduce the related work to the p-NIaaS
model and the novel differences of Libera.

A. Datacenter network virtualization

The state of the art in the current NV is
well illustrated by NVP [2] and VFP [3]. NVP
and VFP deploy a central network orchestration
system that automates VN creation. A VN is
based on overlay networking, such as virtual local
area networks (VLAN), generic routing encap-
sulation (GRE), and stateless transport tunneling
(STT), which generates a tunnel between the edge
switches. NVP installs virtual NIs on the software
edge switch. If a tenant requires L2 switching,
NVP adds a flow rule (FR) for L2 switching on
the edge switch. VFP has accelerated software
switch performance by offloading packet process-
ing tasks to the SmartNIC in hosts.

However, these NV technologies have limita-
tions in VN programmability. First, tenants can
only request the installation of policies at the
edge switches because the technologies are based
on overlay. In addition, the types of policies are
restricted – for example, for Azure and AWS,
only private IP addresses (network address trans-
lation) or firewall policies are allowed [6], [7].
Other policies, such as matching arbitrary pack-

ets, attaching a new header, or rewriting a specific
packet header field, are not permitted.

Second, tenants cannot provision their specific
VN topologies between the edge switches be-
cause a single orchestration determines the topol-
ogy between edge switches. Moreover, once a
topology is determined, the orchestration system
installs the required NIs on the core switches
based on DC policies, which leaves no room for
tenants to program and control NIs.

Other limitations include:
• Custom packet processing logic [5]: A

streaming service may want to program the
functionality of content caching proxies in
the network because such custom packet
processing can enhance service quality. Such
custom processing needs to implement con-
tent storing operations at the necessary NIs,
dynamically redirect traffic to proxy-enabled
NIs, and/or install appropriate policies, none
of which are allowed in the current NV.

• Network monitoring: A tenant may want the
monitoring of traffic and virtual NI states
to diagnose service performance bottlenecks.
However, in the current NV, performance
can be measured only in a VM or container.
To accomplish this goal, a tenant must be
allowed to monitor performance in an end-
to-end manner, including switches and ports.

The above examples are not imaginary but are
plausible scenarios that can benefit tenants. It is
clear that NV needs to be extended to make NIs
programmable, which has led us to develop the
p-NIaaS model.

B. SDN network virtualization

Virtual SDNs have been studied with NHs [8].
An NH is located between the SDN controllers
and the physical NI. It abstracts the underlying
physical NIs and provides address and topology
abstractions, such as virtual IP, MAC addresses,
switches, and ports. SDN controllers send control
messages that contain virtual address and topol-
ogy information so the NH should interpret them
to avoid collisions between tenants. For example,
the NH converts topology information, such as
virtual port numbers and switch IDs, into physical
ones.

Existing NHs successfully implement these
basic functionalities, but they do not fulfill the



3

diverse new demands for clouds. A brief expla-
nation of how Libera overcomes these identified
shortcomings follows, with details to be explained
later in the article.

1) Scalability: The scalability of a NV plat-
form is an important consideration [5]. Scalability
refers to the consumption of a physical switch’s
memory, the CPU cycles of the NH, and the
bandwidth between the NH and switches (control
channel bandwidth). The existing NH is known to
increase the consumption of CPU cycles by up to
170 percent, and to increase the physical memory
consumption of a switch by up to 390 percent
compared to current NV solutions [9]. This lack
of scalability hinders the market acceptance of
NH. Therefore, the p-NIaaS model requires a
mechanism to enhance scalability. Libera intro-
duces the virtualization of FRs, which improves
NH scalability up to eight times.

2) VM migration support: In clouds, VM mi-
gration is frequently performed to avoid ser-
vice failure or to save energy. However, existing
NHs do not provide any mechanisms that sup-
ports network reconfiguration for VM migration
[8]. Libera implements network reconfiguration
which installs forwarding paths between the hosts
without the intervention of tenants. This is done
through the transparent mapping of the NIs.

3) Flexibility: Existing NHs can only support
certain type of physical switches (pSwitches),
predominantly OpenFlow 1.0. However, because
new switches that constitute SDN networks have
recently been developed, the p-NIaaS model
should be flexible enough to accommodate the
new switches and cover switch-specific differ-
ences, such as control message syntax. Therefore,
Libera is designed to accommodate new switches
and their architecture differences effectively.

C. Related work

Table I compares Libera with related work in
terms of VN programmability. NVP [2] and VFP
[3], which are based on overlay, are the common
approaches currently applied in existing DCs.
OpenStack Neutron is also widely used. Neutron
controls the network connections between com-
pute nodes in an OpenStack-based cloud system
and allows the external SDN controller to be used
for the control. SONA (based on ONOS) [10]
and Neutron-ODL (based on OpenDayLight) [11]

are examples. SONA and Neutron-ODL automate
the creation of overlay connections between edge
switches, like NVP and VFP. Similar to NVP
and VFP, policy installation on every vSwitch
and custom VN topology provisioning are im-
possible because physical network is controlled
only by a cloud orchestrator. Network monitor-
ing is possible for only edge switches. Further,
Libera’s components for cloud networking, such
as scalability and VM migration support, are not
fully deliverable. Only VM migration support is
possible on Neutron-ODL.

The term “network-as-a-service (NaaS)” takes
on different meanings as follows: NaaS from
Cisco [12] focuses on network management ef-
ficiency, which has a different scope from Lib-
era. Hardware-based network programmability
has been proposed in NaaS by Costa et al. [13]. It
installs FPGA-based specialized hardware (called
NaaS box) to switches and permits the direct
control of tenants. The NaaS box provides a
certain level of programmability to tenants but
is quite different from Libera in the following
aspects: First, although NaaS box aims to provide
programmability, it is not based on the notion of
“VN.” Therefore, isolation between tenants is not
provided, which is a critical limitation for clouds.
The authors said in the paper that the isolation
between VNs has been left as future research.
Also, the scope of programmability that NaaS
box provides is limited. For instance, custom
VN topology cannot be provisioned because the
tenants have direct access to the NaaS box. Policy
installation and network monitoring are possible
only for the NaaS box-installed switches. Fur-
thermore, NaaS box does not provide scalability
or VM migration support, both of which are
essential for clouds. The term “NaaS” has been
used without the standard meaning elsewhere.
Therefore, this paper uses p-NIaaS to clearly refer
to the programmability of VNs in clouds.

III. P-NIAAS MODEL

Figure 1 presents the components and interac-
tions of the p-NIaaS model. Arrows I1, I2, and I3
in Fig. 1 illustrate the interactions among tenants,
Libera hypervisor, and physical network. The
core of the p-NIaaS model is Libera hypervisor,
which provides a VN to each tenant. A tenant



4

TABLE I. Related work comparisona.

Approach

Policy
installation

on all
vSwitches

Custom VN
topology

provisioning

Network
monitoring

on all
virtual NIs

Scalabil-
ity

VM mi-
gration
support

NVP [2] Overlay × × × × ×

VFP [3] Overlay × × × 3 3
SONA [10] Overlay × × × × ×

Neutron-ODL [11] Over-
lay/L2/L3 × × × × 3

NaaS box [13] Specialized
hardware ◦ × ◦ × ×

Libera NH 3 3 3 3 3
a 3: fully supported, ◦: partially supported, ×: not supported

 Libera network hypervisor

I1 I2

VN manager VN controller

IP: A
Port: B

Tenant

I3

Cloud 
network fabric 

VN for tenant

-Topology:
-Controller: A:B
-Scalability level: LITE

Fig. 1: p-NIaaS model.

uses the VN manager and the VN controller as
follows.

A. VN manager

The VN manager (VNM) of each tenant is the
operator of the VN and makes various requests to
Libera. There are two types of requests: topology
provisioning and scalability level. The requests
from VNM goes through I1 (Fig. 1).

1) Topology provisioning: The VNM initiates
the creation of a VN with a specific topology and
virtual NIs. Virtual NIs include all of the NIs
constituting the VN, such as vSwitches, ports,
and links. The VNM can designate the type of a
vSwitch to be either OpenFlow, white-box, or P4.
The VNM can also create multiple ports on each
vSwitch. Similarly, a virtual link can be created
by connecting two virtual ports.

2) Scalability level: Libera hypervisor pro-
vides FR reduction in order to enhance scalability.
The VNM can define the degree of reduction.

B. VN controller

After the VNM creates a VN and its virtual
NIs, the tenant uses the VN controller (VNC)
for VN operation. The VNC can program the
vSwitch or virtual port by sending control mes-
sages to Libera through I2 (control channel). Lib-
era provides a control channel for each vSwitch.
Because the vSwitch belongs to only one VN,
the control messages of each VN are separately
delivered to Libera. For FRs, the VNC can install
desired FRs to any vSwitches at any time so that
packets are forwarded or dropped dynamically.
The VNC can also program its custom switch
logic on a vSwitch if the switch allows a pro-
grammable logic (e.g., white-box switches). The
VNC can also gather statistical information from
vSwitches or virtual ports. Such programmability
is not feasible with the current NV in DC.

We have designed Libera to use any existing
SDN controller as VNC without modification.
This means that virtual NIs are exposed to the
VNC as SDN switches and links.

IV. Libera COMPONENTS

Upon receiving requests from the VNM and
control messages from the VNC, Libera provides
the requested VN services. Figure 2 shows the
components of Libera.

Libera’s VNM handler in Fig. 2 delivers the
VNM’s requests to the proper Libera compo-



5

nents. Topology provisioning requests are de-
livered to the flexibility component, and scala-
bility level requests are given to the scalability
component. Similarly, control messages from the
VNC are processed in Libera as follows. First,
the control message is processed in the flexibil-
ity component, and subsequently, passed to the
scalability component and VM migration support
component. So, the Libera components process
control messages in isolation.

Flexibility
Virtual NI

VM migration 
support

LITE
reconfiguration

VNM

Physical 
network

Physical NI

VNC

Scalability

LITE

wildcard
hop host

app

VNM handler

 NI mapping

I1 I2

I3

vSwitch vSwitch
Virtual port Virtual portVirtual 

link

pSwitch protocol
(OpenFlow 1.3)

Physical
port

Physical 
link

pSwitch protocol
(White-box)

Physical
port

OpenFlow 1.3
switch

White-box
switch

Switch Port Link Flow
rule

Fig. 2: Libera architecture.

A. Flexibility component

The goals of the flexibility component are to
provide mapping changes dynamically and to
support various pSwitches. To this end, Libera
has a virtual NI layer, NI mapping layer, and
physical NI layer.

1) Virtual NI layer: This layer provisions VN
topologies with virtual NIs. When the VNM
creates a vSwitch, the vSwitch is designed to be
compatible with existing SDN controllers. There-
fore, the vSwitch emulates two generic operations
of the SDN switches: 1) the control channel
and 2) the message handler. The control channel
delivers the control messages (I2 in Fig. 2). The
message handler interprets the control message
syntax and parses the messages, according to
the virtual NI’s type (e.g., OpenFlow 1.3). In
addition, this layer creates a virtual port for each

vSwitch upon requests. When the virtual link is
created, it also stores the end-points of the virtual
link that are two virtual ports.

2) NI mapping layer: This layer introduces the
notion of virtual FRs and physical FRs. Virtual
FRs are installed in vSwitches, and physical FRs
in pSwitches. This layer makes FR mapping
between virtual and physical FRs. The detailed
description of virtual and physical FRs and their
mappings are discussed in [9]. With the notion
of FR mapping, Libera can dynamically change
NIs associated with the mappings. For instance,
when a host migrates, the host is connected to
a new pSwitch, and the forwarding path for the
migrated host needs to be changed. Therefore, the
vSwitches in the VN affected by the VM migra-
tion should be mapped with the new pSwitches.

The NI mapping layer updates and installs the
FRs in the pSwitch. Then this layer modifies
the FR mappings accordingly keeping the FRs in
vSwitches unchanged. With this mapping change,
Libera can provide VN services seamlessly even
when a host migrates dynamically. Note that the
existing NHs do not provide FR mapping so they
cannot support the dynamic change of NIs.

3) Physical NI layer: This layer aims to sup-
port various pSwitches (e.g., OpenFlow 1.0, 1.3,
and white-box switches). Existing NHs mostly
support only one pSwitch type (OpenFlow 1.0).
However, each pSwitch has a different packet
processing sequence and its control message syn-
tax. To support the various pSwitches, Libera
should include a separate implementation for each
pSwitch considering its architectural differences.
In Libera, the physical NI layer implements
switch abstraction protocol that covers all the
pSwitch-specific details. The switch abstraction
protocol is designed to be extensible and is
provided in the form of API to other Libera
components. This layer also translates the address
or topology information of control messages from
other components to the pertinent pSwitch for
VN isolation. With this abstraction protocol and
translation, Libera can support various pSwitches
and make it possible for other Libera components
to implement their logic, agnostic to the pSwitch
architectures.



6

(b) wildcard semantics

Host AppHop

* *A→B

* *C→B

<hop>
Host AppHop

1→2 *A→B

3→4 *A→B

5→6 *C→B

<host>

Similar to the given FRs
<app>

LITE
I→II

LITE for host 1, 3, 5 is I, 
and host 2, 4, 6 is II

(c) LITE semantics

(a) Five FRs 
given by a tenant

Host AppHop

1→2 a→bA→B

1→2 c→dA→B

3→4 a→bA→B

5→6 a→bC→B

1→2 e→fA→B

Fig. 3: FR reduction semantics.

B. Scalability component

This scalability component enhances the scal-
ability of Libera by reducing the number of FRs.
This component does not reduce all FRs. If FRs
exist for dropping packets for certain matched
port fields, the reduction of FRs by changing
its match fields can create conflicts. The reduced
rules cannot correctly distinguish the packets be-
cause the match fields of the rules have been
modified. To avoid this, the scalability component
only reduces the FRs for “packet forwarding”
operations that sends packets from one port to
another port of a switch, which is free from pol-
icy conflicts. The reduction is achieved through
two reduction semantics: wildcard (hop, host,
and app) and location-and-tenant-based identifier
(LITE). Figure 3 shows how reduction semantics
are applied to the five FRs.

1) Wildcard: Wildcard works on the match
fields of each rule. When a FR matches the
packet header field, its actions are applied to
the matched packets. Therefore, the number of
matched FRs can vary depending on the match
fields. For instance, by matching the hop pair, five
rules (Fig. 3a) are reduced to two (<hop> in the
upper-left of Fig. 3b) because the host pair and
application (app) pair are wildcard’ed. Similarly,
matching the host pairs reduces them to three
rules (<host> in the upper-right of Fig. 3b). The
detailed mechanisms are discussed in [9].

2) LITE: LITE consists of a tenant ID and
an edge switch identifier to which a host of
the tenant is attached. If a host is attached to
a switch whose ID is 0a, and the host belongs
to tenant 1, the LITE would be 0x010a. Libera
allocates one LITE per host and uses the LITE

values of the source and destination hosts instead
of the IP addresses. Therefore, packets can be
grouped with the same LITE pair at the ingress
edge switch. Packets are then forwarded based on
the LITE pair at the core switches; thus, LITE
reduces the number of FRs because rules that
match individual flows are aggregated. Figure 3c
illustrates the effect of the LITE reduction when
hosts 1, 3, and 5 are attached to the same switch,
while 2, 4, and 6 are connected to a different
switch. Hosts 1, 3, and 5 are assigned the same
LITE, value I; 2, 4, and 6 are assigned value II,
resulting in a single rule being installed (Fig. 3c).
LITE’s full design is described in [14].

C. VM migration support component

The VM migration support component
achieves network reconfiguration by utilizing the
LITE scheme [14]. When one host migrates,
this component examines the new location
information (edge switch) of the migrated
host and creates a new LITE for the host.
Subsequently, the component updates FRs for
core switches based on the new LITE. This
component then changes the mappings of the
vSwitch to the new edge and core switches using
the NI mapping layer (of flexibility component)
to enable seamless VN services. The mappings
of the virtual FRs in the vSwitch are also updated
to the new LITE-based rules.

This scheme conceals the explicit migration
(from the VNC) and reconfigures VNs at the NH
level. This reduces the delay in reconfiguration
because the migration event is not propagated
to the VNC, and the necessity of preparing for
the VM migration is eliminated from the VNC.
Detailed algorithms are found in [14].

V. PROOF OF CONCEPT

Libera is implemented on top of OpenVir-
teX (OVX) [8], which is an open-source NH.
The source-code of Libera is released through
GitHub2.

We evaluate Libera’s components for the scal-
ability and VM migration support. The overheads
of the entire Libera system are presented in terms
of FR processing time, memory consumption, and
the number of control messages. All experiments

2The detailed execution flow and instructions to run Libera are
included in https://github.com/os-libera/Libera.

https://github.com/os-libera/Libera


7

Core Aggregate Edge
0

25

50

75

100

Switch layer in topology

R
at

io
of

th
e

nu
m

be
r

of
FR

s
(%

)

Wildcard_hop Wildcard_host
Wildcard_app LITE

Fig. 4: Ratio of the number of FRs per reduction
semantics.

0 50 100 150 200
0

5

10

15

20

0

100

200

300

400

500

Number of TCP connections

FR
p

ro
ce

ss
in

g
tim

e
(m

s)

M
em

ory
consu

m
p

tion
(M

B
)

Line: FR processing time, Bar: memory consumption

OVX
Libera, wildcard semantic

Libera, scalability off
Libera, LITE semantic

Fig. 5: FR processing time and memory consump-
tion.

are conducted in a 4-ary fat-tree topology which
consists of core, aggregation, and edge switches3

We use different switches: OpenFlow 1.0, 1.3
software switches, and OF-DPA-based hardware
white-box switches to demonstrate the flexibility
of Libera. Two servers are used to run Libera and
ONOS as VNC. All results are measured more
than 20 times to obtain stable values.

Libera is based on the design of our previous
studies [9], [14] but is implemented to realize the
p-NIaaS model as a complete system. The hard-
ware switch-based evaluations and overheads of
the entire Libera system have not been reported.

A. Scalability

For scalability evaluations, we use OpenFlow
1.0 software switches (Open vSwitch) with five
tenants that have six TCP connections each. This
is based on Libera’s programmability. For each
tenant, Libera first allows the tenant to provision
its own VN topology as a 4-ary fat-tree topology.
Second, Libera lets the tenant use ONOS to
program its VN. Third, the tenant creates FRs that
match six addresses (source/destination ether-
net, source/destination IP, and source/destination
port addresses) and installs the rules at all
vSwitches. This programmability is not possible
with OpenStack-Neutron [10], [11] or Cisco’s
NaaS [12].

Figure 4 shows the decrease in the number
of FRs per reduction semantics. The y-axis is
the number of FRs normalized to the number of
rules of OVX. The maximum reduction is eight
times with the wildcard_hop semantics at the
core switch. These results are promising because,
given the same amount of memory, eight times
more tenants are deployable with our hypervisor.

B. VM migration support

We use hardware switches to measure network
reconfiguration time to evaluate the efficiency
of Libera’s VM migration support. Four OF-
DPA-based white-box switches are used (one
Edgecore AS-6712 switch and three AS-5712
switches). The tenant provisions its VN as a 4-
ary fat-tree topology similar to the scalability
experiments, and ONOS’s reactive forwarding is
used to create FRs, which is possible with the
Libera’s programmability. The FRs match the
four address fields (source/destination ethernet
and source/destination IP addresses).

When a host moves to another edge switch, the
reconfiguration time takes 10.5 ms on average to
reset the forwarding path. Note that VNC is not
engaged in VM migration, which makes ONOS
be used unmodified as VNC. VM migration in
clouds requires service downtime ranging from
milliseconds to seconds [15]. Thus, Libera’s net-
work reconfiguration time is satisfactory.

3Both core and aggregate switches in the fat-tree topology
correspond to the core switches in previous sections.



8

C. Overheads

1) FR processing time and memory consump-
tion: The overheads of Libera are compared to
OVX with OpenFlow 1.3 Open vSwitches. Figure
5 presents the processing time per flow rule and
the memory consumption of Libera when 2, 10,
50, 100, 150, and 200 TCP connections exist.
The results are measured for four settings: 1)
“OVX,” 2) “Libera with scalability component
off,” 3) “Libera with wildcard semantic,” and
4) “Libera with LITE semantic.” The scalability
component is involved for “Libera with wildcard
semantic,” and for both the scalability and VM
migration support components for “Libera with
LITE semantic.”

In Fig. 5, the line graph represents the FR pro-
cessing time. The FR processing time increases
as the number of TCP connections increases.
The maximum increased time of Libera compared
with “OVX” is 2.18 ms (“Libera with wildcard
semantic”). However, this processing for FRs
occurs only once when network connections are
created, which makes the increase not an issue.
Also, when the FRs are pre-installed, the FR
processing time can be eliminated.

The bar graph in Fig. 5 shows the memory
consumption. All four settings exhibit similar
memory overheads, consuming 436.7 MB on
average. The difference between the maximum
and minimum memory consumption is 7 percent
of the maximum consumption, which is not sig-
nificantly high. The results prove that Libera does
not require much memory.

2) Number of control messages: The p-NIaaS
model requires control messages to traverse an
additional layer, Libera hypervisor, which in-
evitably increases the number of control mes-
sages. We collect control messages generated by
the VNC and Libera in the setting of the scal-
ability experiments. The results show that con-
trol messages for FR installation per tenant add
bandwidth overhead up to 11 and 25 percent with
the wildcard_hop and wildcard_end semantics,
respectively. This means that although the control
messages are generated twice (first between the
VNC and the vSwitches and secondly between
Libera and the pSwitches), the bandwidth does
not double. This is because the scalability compo-
nent reduces the control messages between Libera

and the pSwitches, while the messages between
the VNC and vSwitches remain unchanged.

VI. CONCLUSION

This article proposes a concept called
the p-NIaaS model (programmable network
infrastructure-as-a-service). The model is to give
tenants the new ability to program virtual NIs
in their virtual networks, which is not possible
with existing hypervisors. To prove the concept,
we build Libera and evaluate its performance
and overheads. A key advantage of Libera
is that it runs with existing SDN controllers
without modification while providing the full
programmability of virtual NIs. Our results
show that Libera achieves scalability many-fold
higher than the existing network hypervisors.
The outcome indicates that Libera minimizes
the virtualization overhead in the control plane.
So, we believe that this article reduces the gap
between virtualized and non-virtualized SDN,
which brings the network hypervisor a step
closer to market acceptance.

REFERENCES

[1] R. De Souza Couto et al., “Network design
requirements for disaster resilience in IaaS
clouds,” IEEE Commun. Mag., vol. 52, no.
10, 2014, pp. 52–58.

[2] T. Koponen et al., “Network Virtualization
in Multi-tenant Datacenters,” USENIX NSDI,
2014.

[3] D. Firestone, “VFP: A Virtual Switch Plat-
form for Host SDN in the Public Cloud,”
USENIX NSDI, 2017.

[4] M. Jammal, et al., “Software defined net-
working: State of the art and research chal-
lenges,” Computer Networks, vol. 72, pp. 74–
98, 2014.

[5] H. Alshaer, “An overview of network virtual-
ization and cloud network as a service,” Int.
J. Netw. Manag., vol. 25, no. 1, 2015, pp.
1–30.

[6] “Azure Virtual Network | Microsoft
Docs.” https://docs.microsoft.com/en-
us/azure/virtual-network/virtual-networks-
overview.html, accessed October 28, 2018.

[7] “What Is Amazon VPC? -
Amazon Virtual Private Cloud.”
https://docs.aws.amazon.com/vpc/latest/user



9

guide/what-is-amazon-vpc.html, accessed
October 28, 2018.

[8] A. Blenk et al., “Survey on Network Virtu-
alization Hypervisors for Software Defined
Networking,” IEEE Commun. Surveys & Tu-
torials, vol. 18, no. 1, 2016, pp. 655–685.

[9] G. Yang et al., “FlowVirt: Flow Rule Vir-
tualization for Dynamic Scalability of Pro-
grammable Network Virtualization,” Proc.
IEEE 11th Int’l. Conf. Cloud Comput., 2018.

[10] F. Foresta et al., “Improving OpenStack
Networking: Advantages and Performance of
Native SDN Integration,” IEEE Int. Conf.
Commun., 2018.

[11] “OpenStack and OpenDaylight: An
integrated IaaS for SDN and NFV.”
https://www.openstack.org/assets/presentation-
media/OpenStack-and-OpenDaylight-
Integrated-IaaS-for-SDN-and-NFV.pdf,
accessed August 13, 2019.

[12] “Why you should consider
networking as a service - Cisco.”
https://www.cisco.com/c/en/us/solutions/
enterprise-networks/network-as-service-
naas.html, accessed August 11, 2019.

[13] P. Costa, M. Migliavacca, and A. L. Wolf,
“NaaS: Network-as-a-Service in the Cloud,”
Proc. 2nd USENIX Workshop on Hot Topics
in Management of Internet, Cloud, and En-
terprise Networks and Services, 2012.

[14] G. Yang et al., “LiteVisor: A Network Hy-
pervisor to Support Flow Aggregation and
Seamless Network Reconfiguration for VM
Migration in Virtualized Software-defined
Networks,” IEEE Access, vol. 6, 2018, pp.
65945–65959.

[15] R. W. Ahmad et al., “A survey on virtual
machine migration and server consolidation
frameworks for cloud data centers,” J. Netw.
Comput. Appl., vol. 52, 2015, pp. 11–25.

ACKNOWLEDGMENT

This work was partly supported by Institute
of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (No. 2015-0-00288,
Research of Network Virtualization Platform and
Service for SDN 2.0 Realization and No. 2015-0-
00280, (SW Starlab) Next generation cloud infra-

software toward the guarantee of performance and
security SLA). This research was also supported
by Next Generation Engineering Researcher Pro-
gram of National Research Foundation of Ko-
rea(NRF) funded by the Ministry of Science, ICT
(No. NRF-2019H1D8A2105513), and a Korea
University Grant.

Gyeongsik Yang (ksyang@os.korea.ac.kr) He
received B.S., M.S., and Ph.D. degrees in com-
puter science from Korea University in 2015,
2017, and 2019, respectively. In 2018, he worked
as a research intern at Microsoft Research Asia.
He is currently a research professor at Korea
University. His research interests include network
virtualization, datacenter networking, and SDN.

Bong-yeol Yu (byyu@os.korea.ac.kr) He re-
ceived B.S. and M.S. degrees in computer science
from Korea University in 2016 and 2019, re-
spectively. His research interests include network
virtualization, datacenter networking, and SDN.

Heesang Jin (hsjin@os.korea.ac.kr) He re-
ceived B.S. degree in computer science from
Kookmin University in 2018 and is currently an
M.S. student at Korea University. His research
interests include network virtualization, traffic
engineering, and SDN.

Chuck Yoo (chuckyoo@os.korea.ac.kr) He re-
ceived B.S. and M.S. degrees in electronic engi-
neering from Seoul National University and M.S.
and Ph.D. degrees in computer science from the
University of Michigan, Ann Arbor. He worked
as a researcher at Sun Microsystems. Since 1995,
he has been at the College of Informatics at Korea
University, where he is currently a professor. His
research interests include server/network virtual-
ization and operating systems.


	Introduction
	Motivation and Related Work
	Datacenter network virtualization
	SDN network virtualization
	Scalability
	VM migration support
	Flexibility

	Related work

	p-NIaaS model
	VN manager
	Topology provisioning
	Scalability level

	VN controller

	Libera Components
	Flexibility component
	Virtual NI layer
	NI mapping layer
	Physical NI layer

	Scalability component
	Wildcard
	LITE

	VM migration support component

	Proof of Concept
	Scalability
	VM migration support
	Overheads
	FR processing time and memory consumption
	Number of control messages


	Conclusion
	References
	Biographies
	Gyeongsik Yang (ksyang@os.korea.ac.kr)
	Bong-yeol Yu (byyu@os.korea.ac.kr)
	Heesang Jin (hsjin@os.korea.ac.kr) 
	Chuck Yoo (chuckyoo@os.korea.ac.kr)


